Spelling suggestions: "subject:"heat rejection"" "subject:"heat ejection""
1 |
Development of an integrated building load and ground source heat pump model to assess heat pump and ground loop design and performance in a commercial office buildingBlair, Jacob Dale 07 October 2014 (has links)
Ground source heat pumps (GSHPs) offer an efficient method for cooling and heating buildings, reducing energy usage and operating cost. In hot, arid regions such as Texas and the southwest United States, building load imbalance towards cooling causes design and performance challenges to GSHP systems in residential and commercial building applications.
An integrated building load and GSHP model is developed in this thesis to test approaches to reduce GSHP cost, to properly size ground heat exchanger (GHEX) installations and to offer methods to improve GSHP performance in commercial buildings. The integrated model is comprised of a three-story office building, heat pumps, air handling system and a GHEX. These component models were integrated in the Matlab® Simulink® modeling environment, which allows for easy model modification and expansion.
The building-load model was developed in HAMBASE, which simulates the thermal and hygric response of each zone in the building to external weather and internal loads. The building-load model was validated using the ASHRAE 140-2007 Standard Method of Test and with results from EnergyPlus. The heat pump model was developed as a performance map, based on data commonly provided by heat pump manufacturers. This approach allows for easy expansion of the number and type of heat pump models supported. The GHEX model was developed at Oklahoma State University and is based on Eskilson’s g-function model of vertical borehole operation. The GHEX model accurately represents the interaction between boreholes and the ground temperature response over short and long time-intervals. The GHEX model uses GLHEPRO files for parameter inputs.
Long time-interval simulations of the integrated model are provided to assess the sensitivity of the GSHP system to various model parameters. These studies show that: small changes in the total GHEX length reduce system cost with minimal impact on performance; increased borehole spacing improves system performance with no additional cost; supplemental heat rejection reduces installation costs and improves system performance; industry-recommended design cutoff temperatures properly size the GHEX system; and, while cooling is the greatest contributor to operating cost in the southwest and southcentral United States, heating is the limiting design case for GHEX sizing. / text
|
2 |
SOURCES OF HEAT REJECTION IN A HDDI DIESEL ENGINE AND METHODS TO IMPROVE THERMAL EFFICIENCYKyle Michael Palmer (6643880) 10 June 2019 (has links)
In the realm of class 8 trucking, fuel economy and emissions compliance are becoming the driving force for development of new heavy-duty direct injected (HDDI) diesel engine technologies. Current production engines in this class convert around 40% of the fuels energy into usable work while the unused potential transfers to the environment as excess heat energy. Current OEMs are working toward decreasing this heat loss and improve engine efficiency and emissions. Quantifying the energy lost by component and system highlights the areas that demand the most attention. By studying test cell data of heat rejection on a production Cummins ISX engine and using the data to calibrate an engine model for the simulation software GT-Suite, heat rejection values and the components which transfer the energy are exposed. The simulation software provides energy transfer by both system and component type. The results reveal that 10% of engine total heat rejection (THR) is transferred through the cylinder wall to the engine coolant system. When the heat imparted on the cylinder wall is broken up by component, the piston rings contribute nearly as much heat into the liner as the combustion gas.
|
3 |
Development of an integrated building load-ground source heat pump model as a test bed to assess short- and long-term heat pump and ground loop performanceGaspredes, Jonathan Louis 08 February 2012 (has links)
Ground source heat pumps (GSHP) have the ability to significantly reduce the energy required to heat and cool buildings. Historically, deployment of GSHP's in the cooling-dominated Texas and Southwest region has been significantly less than in other regions of the United States. The long term technical and economic viability of GSHPs in arid regions such as Texas has been questioned due to failures of ground loop heat pump systems by early adopters. A proposed solution is to include a supplemental heat rejection (SHR) device to help offset the unbalanced ground loads.
An integrated building load-ground source heat pump model is developed in this thesis and is designed to be a test bed for potential SHR devices. The model consists of discrete component models that can be mixed and matched to represent various types of buildings and ground source heat pumps. One of the unique features of the integrated model is the use of the Simulink/Matlab environment. This environment allows the user to develop component models that take advantage of the built-in functionality of Matlab and Simulink. Another unique feature is the full coupling of the building load, heat pump, and ground loop at every time step. The building load, heat pump, and ground loop models were chosen to allow for short time step simulations, which allows for a range of dynamic response times to be modeled and for different heat pump/SHR control methods to be explored. The integrated model can be used on any computer that has the Matlab and Simulink software.
The building load model used, called HAMBASE, can model both residential and commercial buildings. HAMBASE was validated using the ASHRAE 140-2007 standard. The heat pump model uses readily available data provided by GSHP manufacturers to accurately model operation across a wide range of input conditions. The vertical borehole ground loop model, developed at Oklahoma State University, is based on Eskillson's g-function model, but included a one-dimensional numerical model to calculate the short term thermal response of the borehole and ground. The ground loop model utilizes GLHEPRO, a ground loop sizing and simulation tool, to create the required parameter files.
Using the integrated building load-ground source heat pump model, a model of a single family house with a ground source heat pump was developed. The house model was validated by the results from eQuest and GELHPRO. A series of sensitivity studies were completed to determine dominant factors affecting the use of GSHPs in Texas and the Southwest regions of the United States. The results show that the life of a vertical borehole can be significantly extended/cut short if the ground parameters are properly/not properly designed prior to ground loop sizing. / text
|
4 |
Supplemental heat rejection in ground source heat pumps for residential houses in Texas and other semi-arid regionsBalasubramanian, Siddharth 08 February 2012 (has links)
Ground source heat pumps (GSHP) are efficient alternatives to air source heat pumps to provide heating and cooling for conditioned buildings. GSHPs are widely deployed in the midwest and eastern regions of the United States but less so in Texas and the southwest regions whose climates are described as being semi-arid. In these semi-arid regions, building loads are typically cooling dominated so the unbalance in energy loads to the ground, coupled with less conductive soil, cause the ground temperature to increase over time if the ground loop is not properly sized. To address this ground heating problem especially in commercial building applications, GSHPs are coupled with supplemental heat recovery/rejection (SHR) systems that remove heat from the water before it is circulated back into the ground loops. These hybrid ground source heat pump systems are designed to reduce ground heating and to lower the initial costs by requiring less number of or shallower boreholes to be drilled.
This thesis provides detailed analyses of different SHR systems coupled to GSHPs specifically for residential buildings. The systems are analyzed and sized for a 2100 ft2 residential house, using Austin, Texas weather data and ground conditions. The SHR systems investigated are described by two heat rejection strategies: 1) reject heat directly from the water before it enters the ground loops and 2) reject heat from the refrigerant loop of the vapor compression cycle (VCC) of the heat pump so less heat is transferred to the water loop at the condenser of the VCC.
The SHR systems analyzed in this thesis are cooling towers, optimized VCC, expanded desuperheaters and thermosyphons. The cooling towers focus on the direct heat rejection from the water loop. The VCC, desuperheater, and thermosyphon systems focus on minimizing the amount of heat rejected by the VCC refrigerant to the water loop. In each case, a detailed description of the model is presented, a parametric analysis is provided to determine the amounts of heat that can be rejected from the water loop for various cases of operation, and the practical feasibility of implementation is discussed. An economic analysis is also provided to determine the cost effectiveness of each method. / text
|
5 |
A Decision analysis guideline for underground bulk air heat exchanger design specificationsHooman, Marle January 2013 (has links)
This study investigated different underground bulk air heat exchanger (>100 m3/s) design criteria. It was found that no single document exist covering these heat exchangers and therefore the need was identified to generate a guideline with decision analyser steps to arrive at a technical specification. The study investigated the factors influencing the heat exchanger designs (spray chambers, towers and indirect-contact heat exchangers) and the technical requirements for each. The decision analysers can be used to generate optimised user-friendly fit-for-purpose bulk air heat exchanger (air cooler and heat rejection) designs. The study was tested against a constructed air cooler and heat rejection unit at a copper mine. It was concluded that the decision analysers were used successfully. It is recommended design engineers use these decision analysers to effectively design other heat exchangers. / Dissertation (MEng)--University of Pretoria, 2013. / gm2014 / Mining Engineering / unrestricted
|
6 |
District Cooling for Al Hamra Village in Ras Al Khaimah-United Arab Emirates (UAE)Perera, Withanage Chanaka Sameera January 2011 (has links)
<p>I did my presentation through Centra infron of Professor Bjorn Palm and Dr. Sad Jarall.</p>
|
7 |
Investigation of a Planar Heat Pipe TopologyGuzek, Brian John 13 September 2016 (has links)
No description available.
|
8 |
The Use of Ammonium Carbamate as a High Specific Thermal Energy Density Material for Thermal Management of Low Grade HeatSchmidt, Joel Edward 22 August 2011 (has links)
No description available.
|
9 |
A contribution to the global modeling of heat transfer processes in Diesel enginesSalvador Iborra, Josep 02 September 2020 (has links)
[EN] Current challenges in research and development of powertrains demand new computational tools capable of simulating vehicle operation under very diverse conditions. This is due, among other reasons, to new homologation standards in the automotive sector requiring compliance of exhaust emissions regulations under any possible driving condition on the road. Global engine or vehicle models provide many advantages to engineers because they allow to reproduce the entire system under study, considering the physical processes that take place in different components and the interactions among them. This thesis aims to enable the modeling of heat transfer processes in a complete engine simulation tool developed at CMT-Motores Térmicos research institute. This 0D/1D simulation tool is called Virtual Engine Model (VEMOD).
The development of heat transfer models comprises the engine block and the ancillary systems. The model of heat transfer in the engine block deals with the central problem of in-cylinder convection by means of a combination of experimental research, CFD simulation and multizone 0D modeling. The other thermal processes present in the engine block are examined in order to implement suitable submodels. Once the model is complete, it undergoes a validation with experimental transient tests. Afterwards, the ancillary systems for engine thermal management are brought into focus. These systems are considered by means of two new models: a model of heat exchangers and a model of thermo-hydraulic circuits. The development of those models is reported in detail.
Lastly, with the referred thermal models integrated in the global simulation tool, a validation study is undertaken. The goal is to validate the ability of the Virtual Engine Model to capture the thermal response of a real engine under various operating conditions. To achieve that, an experimental campaign combining tests under steady-state operation, under transient operation and at different temperatures is conducted in parallel to the corresponding simulation campaign. The capacity of the global engine simulations to replicate the measured thermal evolution is finally demonstrated. / [ES] Los retos actuales en la investigación y desarrollo de trenes de potencia demandan nuevas herramientas computacionales capaces de simular el funcionamento de un vehículo en condiciones muy diversas. Esto se debe, entre otras razones, a que los nuevos estándares de homologación en el sector de la automoción obligan al cumplimiento de las regulaciones de emisiones en cualquier condición posible de conducción en carretera. Los modelos globales de motor o de vehículo proporcionan muchas ventajas a los ingenieros porque permiten reproducir el sistema entero a estudiar, considerando los procesos físicos que tienen lugar en los distintos componentes y las interacciones entre ellos. Esta tesis pretende hacer posible el modelado de los procesos de transmisión de calor en una completa herramienta de simulación de motor desarrollada en el instituto de investigación CMT-Motores Térmicos. Esta herramienta de simulación 0D/1D se denomina Motor Virtual o Virtual Engine Model (VEMOD).
El desarrollo de modelos de transmisión de calor comprende el bloque motor y los sistemas auxiliares. El modelo de transmisión de calor en el bloque motor aborda el problema central de la convección en el interior del cilindro mediante una combinación de investigación experimental, simulación CFD y modelado 0D multizona. El resto de procesos térmicos presentes en el bloque motor son examinados para poder implementar submodelos adecuados. Una vez el modelo está terminado, se realiza una validación con ensayos experimentales en régimen transitorio. A continuación, el foco de atención pasa a los sistemas auxiliares de gestión térmica. Estos sistemas se toman en consideración por medio de dos nuevos modelos: un modelo de intercambiadores de calor y un modelo de circuitos termohidráulicos. El desarrollo de los modelos se explica en detalle en esta tesis.
Por último, con los citados modelos integrados en el Motor Virtual, se lleva a cabo un estudio de validación. El objectivo es validar la capacidad del Motor Virtual para reproducir la respuesta térmica de un motor real en varias condiciones de funcionamento. Para conseguirlo, se realiza una campaña experimental que combina ensayos en régimen estacionario, en régimen transitorio y a diferentes temperaturas, en paralelo a la campaña de simulación correspondiente. La capacidad de las simulaciones globales de motor para replicar la evolución térmica medida experimentalmente queda finalmente demostrada. / [CA] Els reptes actuals en la recerca i el desenvolupament de trens de potència demanden noves eines computacionals capaces de simular el funcionament d'un vehicle en condicions molt diverses. Açò es deu, entre altres raons, a que els nous estàndards d'homologació al sector de l'automoció obliguen al compliment de les regulacions d'emissions en qualsevol condició possible de conducció en carretera. Els models globals de motor o de vehicle proporcionen molts avantatges als enginyers perquè permeten reproduir el sistema sencer a estudiar, considerant els processos físics que tenen lloc als distints components i les interaccions entre ells. Aquesta tesi pretén fer possible el modelat dels processos de transmissió de calor en una completa eina de simulació de motor desenvolupada a l'institut de recerca CMT-Motores Térmicos. Aquesta eina de simulació 0D/1D s'anomena Motor Virtual o Virtual Engine Model (VEMOD).
El desenvolupament de models de transmissió de calor comprén el bloc motor i els sistemes auxiliars. El model de transmissió de calor al bloc motor aborda el problema central de la convecció a l'interior del cilindre mitjançant una combinació de recerca experimental, simulació CFD i modelat 0D multizona. La resta de processos tèrmics presents al bloc motor són examinats per a poder implementar submodels adequats. Una vegada el model està acabat, es fa una validació amb assajos experimentals en règim transitori. A continuació, el focus d'atenció passa als sistemes auxiliars de gestió tèrmica. Aquests sistemes es prenen en consideració per mitjà de dos nous models: un model d'intercanviadors de calor i un model de circuits termohidràulics. El desenvolupament dels models s'explica en detall en aquesta tesi.
Per últim, amb els referits models integrats al Motor Virtual, es porta a terme un estudi de validació. L'objectiu és validar la capacitat del Motor Virtual per a reproduir la resposta tèrmica d'un motor real en diverses condicions de funcionament. Per a assolir-ho, es realitza una campanya experimental que combina assajos en règim estacionari, en règim transitori i a diferents temperatures, en paral·lel a la campanya de simulació corresponent. La capacitat de les simulacions globals de motor per a replicar l'evolució tèrmica observada experimentalment queda finalment demostrada. / European funds received in the framework
of Horizon 2020’s DiePeR project have contributed to the validation and
improvement of the Virtual Engine Model. My own dedication has been
funded by Universitat Politècnica de València through the predoctoral
contract FPI-S2-2016-1357 of “Programa de Apoyo para la Investigaci´on
y Desarrollo (PAID-01-16)”. / Salvador Iborra, J. (2020). A contribution to the global modeling of heat transfer processes in Diesel engines [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/149575
|
10 |
ANALYTICAL AND EXPERIMENTAL INVESTIGATION OF TEMPERATURE-SWING INSULATION ON ENGINE PERFORMANCEAndruskiewicz, Peter Paul 06 November 2017 (has links)
In-cylinder thermal barrier materials have been thoroughly investigated for their potential improvements in thermal efficiency in reciprocating internal combustion engines. These materials show improvements both directly in indicated work and indirectly through reduced demand on the cooling system. Many experimental and analytical sources have shown reductions in heat losses to the combustion chamber walls, but converting the additional thermal energy to indicated work has proven more difficult. Gains in indicated work over the expansion stroke could be made, but these were negated by increased compression work and reduced volumetric efficiency due to charge heating. Typically, the only improvements in brake work would come from the pumping loop in turbocharged engines, or from additional exhaust energy extraction through turbine-compounding devices.
The concept of inter-cycle wall-temperature-swing holds promise to reap the benefits of insulation during combustion and expansion, while not suffering the penalties incurred with hotter walls during intake and compression. The combination of low volumetric heat capacity and low thermal conductivity would allow the combustion chamber surface temperature to quickly respond to the gas temperature throughout combustion. Surface temperatures are capable of rising in response to the spike in heat flux, thereby minimizing the temperature difference between the gas and wall early in the expansion stroke when the greatest conversion of thermal energy to mechanical work is possible. The combination of low heat capacity and thermal conductivity is essential in allowing this temperature increase during combustion, and in enabling the surface to cool during expansion and exhaust to avoid harmfully affecting engine volumetric efficiency during the intake stroke and minimizing compression work performed on the next stroke.
In this thesis, thermal and thermodynamic models are constructed in an attempt to predict the effects of material properties in the walls, and to characterize the effects of heat transfer at different portions of the cycle on indicated work, volumetric efficiency, exhaust energy and gas temperatures of a reciprocating internal combustion engine. The expected impact on combustion knock in spark-ignited engines was also considered, as this combustion mode was the basis for the experimental engine testing performed.
Conventional insulating materials were evaluated to benchmark the current state-of-the-art, and to gain experience in the analysis of materials with temperature-swing capability. Unfortunately, the effects of permeable porosity within the conventional coating on heat losses, fuel absorption and compression ratio tended to mask the effects of temperature swing. The individual impact of each of these loss mechanisms on engine performance was analyzed, and the experience helped to further refine the necessary traits of a successful temperature-swing material
Finally, from the learnings of this analysis phase, a novel material was created and applied to the piston surface, intake valve faces, and exhaust valve faces. Engine data was taken with these coated components and compared to an un-coated baseline. While some of the test pieces physically survived the testing, analysis of the data suggests that they were not fully sealed and suffered from the same permeability losses that affected the conventional insulation. Further development is necessary to arrive at a robust, effective solution for minimizing heat transfer through wall temperature swing in reciprocating internal combustion engines. The success of temperature-swing thermal barrier materials requires very low thermal conductivity, heat capacity, and appropriate insulation thickness, as well as resilient sealing of any porous volume within the coating to avoid additional heat and fuel energy losses throughout the cycle. / Los materiales aislantes han sido investigados a fondo por sus posibles mejoras en la eficiencia térmica de los motores de combustión interna alternativos. Estas mejoras se ven reflejadas tanto directamente en el trabajo indicado como indirectamente a través de la reducción del sistema de refrigeración del propio motor. Diferentes estudios, tanto experimentales como analíticos, han mostrado la reducción en la transferencia de calor a través de las paredes de la cámara de combustión mediante la utilización de estos materiales. Sin embargo, demostrar la conversión de la energía térmica adicional en trabajo indicado ha resultado más difícil. En ciertos estudios se pudieron obtener mejoras en el trabajo indicado durante la carrera de expansión, pero éstas fueron reducidas debido a un menor rendimiento volumétrico debido al calentamiento de la carga durante el proceso de admisión y un mayor trabajo en la carrera de compresión. Típicamente, las únicas mejoras en el trabajo al freno provendrían de la reducción de pérdidas por bombeo en los motores turboalimentados, o de la extracción de la energía adicional de los gases de escape a través de turbinas.
El concepto de los materiales con oscilación de la temperatura durante el ciclo motor intenta aprovechar los beneficios del aislamiento durante los procesos de combustión y expansión, mitigando las perdidas por el incremento de la temperatura de las paredes durante la admisión y la compresión. La combinación de baja capacidad calorífica y baja conductividad térmica permitiría que la temperatura de la superficie de la cámara de combustión respondiera rápidamente a la temperatura del gas durante el proceso de combustión. Las temperaturas de la superficie son capaces de aumentar en respuesta al pico de flujo de calor, minimizando así la diferencia de temperatura entre el gas y la pared en la carrera de expansión cuando es posible la mayor conversión de energía térmica en trabajo mecánico. La combinación de baja capacidad calorífica y conductividad térmica es también esencial para permitir este aumento de temperatura durante la combustión y para permitir que la superficie se enfríe durante la expansión y el escape para no perjudicar así el rendimiento volumétrico del motor durante la carrera de admisión y minimizar el trabajo de compresión realizado en el siguiente ciclo.
En esta tesis se han desarrollado modelos térmicos y termodinámicos para predecir los efectos de las propiedades de los materiales en las paredes y caracterizar los efectos de la transferencia de calor en diferentes partes del ciclo sobre el trabajo indicado, el rendimiento volumétrico, la energía en los gases de escape y las temperaturas del gas para un motor de combustión interna alternativo. También se ha evaluado el impacto del uso de estos materiales en el knock en motores de combustión de encendido provocado, ya que los estudios experimentales de esta tesis se realizaron en un motor de estas características.
Durante la investigación se evaluaron materiales aislantes convencionales para comprender el estado actual de esta técnica y para adquirir también experiencia en el análisis de materiales aislantes con oscilación de temperatura. Desafortunadamente, los efectos de la permeabilidad a través de la porosidad del material en los recubrimientos convencionales, la absorción de combustible y la relación de compresión tendieron a ocultar los efectos de la oscilación de la temperatura y la reducción de la transferencia de calor a través de las paredes. Así pues, se analizó el impacto individual de cada uno de estos mecanismos y su influencia en el rendimiento del motor para así definir un nuevo material con las características necesarias que mejorasen el aislante con de oscilación de temperatura.
Finalmente, a partir de los estudios de esta fase de análisis, se creó un nuevo material y se aplicó a la superficie del pistón y a la supe / Els materials aïllants han estat investigats a fons per les seves possibles millores en l'eficiència tèrmica en el motors de combustió interna alternatius. Aquestes millores es veuen reflectides tant directament en el treball indicat com indirectament a través de la reducció del sistema de refrigeració del propi motor. Diferents estudis, tant experimentals com analítics, han mostrat la reducció en la transferència de calor a través de les parets de la cambra de combustió mitjançant la utilització d'aquests materials. No obstant això, demostrar la conversió de l'energia tèrmica addicional en treball indicat ha resultat més difícil. En certs estudis es van poder obtenir millores en el treball indicat durant la carrera d'expansió, però aquestes van ser reduïdes a causa d'un menor rendiment volumètric causat de l'escalfament de la càrrega durant el procés d'admissió i un major treball en la carrera de compressió. Típicament, les úniques millores en el treball al fre provindrien de la reducció de pèrdues per bombeig en els motors turbo alimentats, o de l'extracció addicional de l'energia dels gasos d'escapament a través de turbines.
El concepte dels materials amb oscil·lació de la temperatura durant el cicle motor intenta aprofitar els beneficis de l'aïllament durant els processos de combustió i expansió, mitigant les perdudes per l'increment de la temperatura de les parets durant l'admissió i la compressió. La combinació de baixa capacitat calorífica i baixa conductivitat tèrmica permetria que la temperatura de la superfície de la cambra de combustió respongués ràpidament a la temperatura del gas durant el procés de combustió. Les temperatures de la superfície són capaços d'augmentar en resposta al flux de calor, minimitzant així la diferència de temperatura entre el gas i la paret en la carrera d'expansió quan és possible la major conversió d'energia tèrmica en treball mecànic. La combinació de baixa capacitat calorífica i conductivitat tèrmica és també essencial per permetre aquest augment de temperatura durant la combustió i el refredament de la superfície durant l'expansió i l'escapament per no perjudicar així el rendiment volumètric del motor durant la carrera d'admissió i minimitzar el treball de compressió realitzat en el següent cicle.
En aquesta tesi s'han desenvolupat models tèrmics i termodinàmics per predir els efectes de les propietats dels materials en les parets i caracteritzar els efectes de la transferència de calor en diferents parts del cicle sobre el treball indicat, el rendiment volumètric, l'energia en els gasos d'escapament i les temperatures del gas per un motor de combustió interna alternatiu. També s'ha avaluat l'impacte d'aquests materials en el knock en motors de combustió d'encesa provocada, ja que les proves experimentals d'aquesta tesi es van realitzar en un motor d'aquestes característiques.
Durant la investigació es van avaluar materials aïllants convencionals per comprendre l'estat actual d'aquesta tècnica i per adquirir també experiència en l'anàlisi de materials aïllants amb oscil·lació de temperatura. Desafortunadament, els efectes de la permeabilitat a través de la porositat del material en el recobriment convencional, l'absorció de combustible i la relació de compressió van tendir a ocultar els efectes de l'oscil·lació de la temperatura i la reducció de la transferència de calor a través de les parets. Així doncs, es va analitzar l'impacte individual de cada un d'aquests mecanismes i la seva influència en el rendiment del motor per així definir un nou material amb les característiques necessàries que milloressin el aïllant d'oscil·lació de temperatura.
Finalment, a partir dels estudis d'aquesta fase d'anàlisi, es va crear un nou material i es va aplicar a la superfície del pistó i a la superfície interna de les vàlvules d'admissió i d'escapament. Les dades de motor es van prendre a / Andruskiewicz, PP. (2017). ANALYTICAL AND EXPERIMENTAL INVESTIGATION OF TEMPERATURE-SWING INSULATION ON ENGINE PERFORMANCE [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/90467
|
Page generated in 0.0986 seconds