• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Thermostated Kac models

Vaidyanathan, Ranjini 07 January 2016 (has links)
We consider a model of N particles interacting through a Kac-style collision process, with m particles among them interacting, in addition, with a thermostat. When m = N, we show exponential approach to the equilibrium canonical distribution in terms of the L2 norm, in relative entropy, and in the Gabetta-Toscani-Wennberg (GTW) metric, at a rate independent of N. When m < N , the exponential rate of approach to equilibrium in L2 is shown to behave as m/N for N large, while the relative entropy and the GTW distance from equilibrium exhibit (at least) an "eventually exponential” decay, with a rate scaling as m/N^2 for large N. As an allied project, we obtain a rigorous microscopic description of the thermostat used, based on a model of a tagged particle colliding with an infinite gas in equilibrium at the thermostat temperature. These results are based on joint work with Federico Bonetto, Michael Loss and Hagop Tossounian.
2

Microscopic Foundations of Thermodynamics and Generalized Statistical Ensembles

Campisi, Michele 05 1900 (has links)
This dissertation aims at addressing two important theoretical questions which are still debated in the statistical mechanical community. The first question has to do with the outstanding problem of how to reconcile time-reversal asymmetric macroscopic laws with the time-reversal symmetric laws of microscopic dynamics. This problem is addressed by developing a novel mechanical approach inspired by the work of Helmholtz on monocyclic systems and the Heat Theorem, i.e., the Helmholtz Theorem. By following a line of investigation initiated by Boltzmann, a Generalized Helmholtz Theorem is stated and proved. This theorem provides us with a good microscopic analogue of thermodynamic entropy. This is the volume entropy, namely the logarithm of the volume of phase space enclosed by the constant energy hyper-surface. By using quantum mechanics only, it is shown that such entropy can only increase. This can be seen as a novel rigorous proof of the Second Law of Thermodynamics that sheds new light onto the arrow of time problem. The volume entropy behaves in a thermodynamic-like way independent of the number of degrees of freedom of the system, indicating that a whole thermodynamic-like world exists at the microscopic level. It is also shown that breaking of ergodicity leads to microcanonical phase transitions associated with nonanalyticities of volume entropy. The second part of the dissertation deals with the problem of the foundations of generalized ensembles in statistical mechanics. The starting point is Boltzmann's work on statistical ensembles and its relation with the Heat Theorem. We first focus on the nonextensive thermostatistics of Tsallis and the associated deformed exponential ensembles. These ensembles are analyzed in detail and proved (a) to comply with the requirements posed by the Heat Theorem, and (b) to interpolate between canonical and microcanonical ensembles. Further they are showed to describe finite systems in contact with finite heat baths. Their mechanical and information-theoretic foundation, are highlighted. Finally, a wide class of generalized ensembles is introduced, all of which reproduce the Heat Theorem. This class, named the class of dual orthodes, contains microcanonical, canonical, Tsallis and Gaussian ensembles as special cases.

Page generated in 0.0605 seconds