• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 149
  • 62
  • 32
  • 15
  • 9
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 3
  • 2
  • 2
  • Tagged with
  • 382
  • 382
  • 63
  • 53
  • 46
  • 43
  • 40
  • 37
  • 34
  • 34
  • 33
  • 32
  • 29
  • 29
  • 27
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Heat transfer performance during condensation inside spiralled micro-fin tubes

Bukasa, Jean-Pierre Muenja 21 November 2011 (has links)
D.Ing. / Many studies have been conducted in order to establish the respective influence of geometric parameters such as fins number, fin shape (apex angle), spiral angle, fin height, fin pitch etc. on the condensation heat transfer performance of the spiralled micro-fin tubes. However, the effect of the spiral angle could not be clearly established in those investigations, because other geometric parameters affecting the heat transfer performance such as fin height, fin thickness, apex angle were also varied. The influence of the spiral angle on the heat transfer performance during condensation inside spiralled micro-fin tubes having all other geometric parameters the same was experimentally investigated in this study. A new experimental-based predictive correlation was developed for practical design of this specific class of micro-fin tubes. Tests were conducted for condensation of R22, R134a and R407c inside a smooth and three micro-fin tubes having spiral angles of 10, 18 and 37 degrees. Experimental results indicated a heat transfer augmentation due to heat transfer area increase. As the spiral angle was increased, the heat transfer area increased causing a substantial heat transfer augmentation. Condensation inside the 10° spiralled micro-fins produced a heat transfer augmentation of about 170% for a heat transfer area increase of 1.87 when compared to condensation in ~he correspondent smooth tube while the 18° spiralled " micro-fins produced an augmentation of 180% for a heat transfer area increase of 1.94. The 37° spiralled micro-fins produced the highest enhancement of 220% for a heat transfer area increase of 2.13. Additional heat transfer augmentation was produced by: (a) the turbulence in the condensate film due to the presence of spiralled micro-fins (stronger effect at lower mass velocities and vapor qualities) and (b) the effect of surface tension forces (at higher vapor qualities). The proposed new correlation predicted the majority of experimental results of the present study within a deviation zone of ± 20 percent.
102

An investigation of the performance of cross-flow heat exchangers used in air conditioning

Kane, Eneas Dillon January 2011 (has links)
Typescript, etc. / Digitized by Kansas State University Libraries
103

A velocity transfer function analysis of forced convention heat transfer

Mahaffey, Michael Kent. January 1966 (has links)
Call number: LD2668 .T4 1966 M215 / Master of Science
104

Boiling in narrow channels

Kew, Peter Arthur January 1995 (has links)
No description available.
105

Two-phase pressure drop and void fraction in narrow channels

Holt, Adrian John January 1996 (has links)
No description available.
106

Uncertainty analysis of heat exchangers

26 February 2009 (has links)
M.Ing. / Experiments are being conducted with regard to heat exchange systems. However, there are errors and uncertainties attached to each system. Journals, which publish articles concerning heat transfer experiments, require an estimate of this uncertainty. These uncertainties must be calculated in order to determine how valid a set of results is. The uncertainty describes to what level one may rely on a set of experimental results and conclusions. The uncertainty was calculated by the formulation of an uncertainty equation with the use of various statistical methods. Adjustments or modifications had to be made to the present uncertainty equations in order to calculate the uncertainty in heat transfer systems. Uncertainty based on a general uncertainty equation by Schultz and Cole (1979) enabled the derivation of the equations to calculate the necessary uncertainty factor for heat transfer systems. Implementation of the equations in various experimental set-ups was achieved. The uncertainty equations yielded results that seemed consistent with the subjective view of the experimenter. Therefore, the equations were considered valid.
107

Flow patterns during refrigerant condensation in smooth and enhanced tubes

20 January 2009 (has links)
M.Ing. / The Montreal Protocol led to the phasing-out of ozone layer depleting refrigerants and replacing them with more environmentally friendly refrigerants, which in many cases caused heat transfer degradation in heat exchanger equipment. To make up for the heat transfer degradation, there was a need for the application of heat transfer enhancement techniques. One such technique is the use of micro-fin tubes as opposed to traditional smooth tubes. The purpose of this study is to develop a flow regime map for the condensation of R-22, R-407C and R-134a in a herringbone micro-fin tube. It was perceived that with the knowledge of flow patterns inside the tube and especially the annular-to-intermittent transition, it is possible to perform improved analyses of the heat transfer and pressure drop characteristics. Experimental and analytical work was performed to investigate the flow regimes during condensation of the refrigerants in smooth, helical micro-fin and herringbone micro-fin tubes at an average saturation temperature of 40oC, with mass fluxes ranging from 300 to 800 kg/m2s. Condensation occurred in tube-in-tube type condensers with cooling water flowing in the annulus and the refrigerant in the inner tubes. The condensers consisted of eight sub-sections to allow for the acquisition of sectional heat transfer and pressure data. Various criteria were considered in order to generate flow regime maps. The Thome flow regime transition criterion was used and complemented with visually-observed and photographic imaging, as well as the objective power spectral density distributions of the pressure signals of the condensing refrigerants. The observed flow regimes were mainly annular flow and intermittent flow. Stratified-wavy flow was observed at low mass fluxes and low vapour qualities. There were notable similarities in the flow pattern between the smooth and micro-fin tubes. However, the experimental results show that the transition from annular to intermittent flow regimes occurred at average vapour quality values of 0.26, 0.29 and 0.48 for the herringbone micro-fin, the helical micro-fin and smooth tubes respectively. The combined analyses assisted in adapting the helical micro-fin tube condensing flow pattern map, to ensure its application in accurately predicting herringbone micro-fin tube condensation. The new transition criterion effectively predicts the delay in transition from annular to intermittent flow for all three refrigerants, condensing in the herringbone micro-fin tube.
108

Augmentation of condensation heat transfer with in-line static mixers

Lin, Shih-Teh January 2011 (has links)
Digitized by Kansas Correctional Industries
109

Innovative heat exchangers for solar water heaters

Soo Too, Yen Chean, Mechanical & Manufacturing Engineering, Faculty of Engineering, UNSW January 2007 (has links)
The performance of two innovative collector-loop heat exchangers used in pumped circulation solar water heaters was investigated experimentally and numerically, and TRNSYS simulation models were developed for evaluating long-term performance. The heat exchangers evaluated are a narrow gap mantle on a vertical tank and a falling film system in a standard gas hot water tank. The falling film system is based on minor changes to a mass produced tank and does not require the addition of a special purpose heat exchanger. The heat exchangers were assessed for a range of operating conditions to quantify the overall heat exchanger UAhx value and the effect of thermal stratification in the tank. Flow visualisation experiments and CFD modelling were also performed to provide detailed understanding of the operation characteristics of the heat exchangers. For each heat exchanger, the measured and computed collector loop side heat transfer coefficients were correlated by developing new Nusselt number versus Reynolds and Prandtl number functions. New heat transfer correlations were developed for both types of heat exchanger and have been implemented into full solar water heater simulation models in TRNSYS. Predictions of tank stratification conditions in each heat exchanger were in good agreement with experimental data. Compared to a standard direct circulation system, the annual performance of the mantle system and falling film system are 8% and 18% less respectively. The decrease in system performance is due to the heat exchanger penalty and reduced thermal stratification in the storage tank, however they have the added features of freeze protection and suitability for hard water areas. They are also cheaper to manufacture than convectional heat exchange systems. The annual performance of a falling film solar water heater was shown to be affected by de-stratification if an in-tank electric booster was used. However, improved performance can be achieved if an advanced switching controller is used to modulate the flow rate such that the collector return temperature is always higher than the temperature in the top of the tank.
110

Strategies for optimization in heat exchanger network design / by (Frank) Xin X. Zhu.

Zhu, Xin X. (Xin Xiong) January 1994 (has links)
Bibliography: leaves 273-287. / xviii, 289 leaves : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / The aim of this thesis is to develop a new method for the conceptual design of heat exchanger networks. The initial designs can be optimized using conventional non-linear optimization techniques in the subset of the problem's initial dimensionality. / Thesis (Ph.D.)--University of Adelaide, Dept. of Chemical Engineering, 1994

Page generated in 0.0764 seconds