• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Heat transfer between a supernatant gas and a flowing vibrofluidized bed of solid particles

Cheah, Chun-Wah January 1986 (has links)
The purpose of this study is to develop and demonstrate a novel process for heat recovery from hot exhaust gases. This process involves direct contact of a hot gas with a countercurrently flowing vibrofluidized bed of cold solid. Based on a simple heat-transfer model, an "apparent" heat-transfer coefficient between the air and solid was calculated. The temperature profile of the air as a function of heat-exchanger length was used to determine the "apparent" area for heat transfer in the model. Analysis, based on factorial-design experiments, showed that increasing the airflow rate and applied vibrational intensity, as well as decreasing the baffle height of the system served to increase the "apparent" heat-transfer coefficient. Increasing the solid flow rate produced higher heat-transfer coefficients only when the baffle was lowered past a certain "critical" height. Under optimum conditions investigated, a gas-to-bed heat-transfer coefficient of about 270 W/m²-K was obtained with a heat exchanger length of 0.71 m. "Cold-flow" experiments of the system were used to explain the heat-transfer trends. A condition analogous to "flooding" determined the operating range of the "flowing" vibrofluidized-bed heat exchanger. As a result of this work, significant progress has been made on the evolutionary development of a vibrofluidized-bed heat exchanger to be used for future heat recovery. / M.S.
2

The geometric characterization and thermal performance of a microchannel heat exchanger for diesel engine waste heat recovery

Yih, James S. 29 November 2011 (has links)
Rising energy demands and the continual push to find more energy efficient technologies have been the impetus for the investigation of waste heat recovery techniques. Diesel engine exhaust heat utilization has the potential to significantly reduce the consumption of fossil fuels and reduce the release of greenhouse gases, because diesel engines are ubiquitous in industry and transportation. The exhaust energy can used to provide refrigeration by implementing an organic Rankine cycle coupled with a vapor-compression cycle. A critical component in this system, and in any waste heat recovery system, is the heat exchanger that extracts the heat from the exhaust. In this study, a cross-flow microchannel heat exchanger was geometrically examined and thermally tested under laboratory conditions. The heat exchanger, referred to as the Heat Recovery Unit (HRU), was designed to transfer diesel exhaust energy to a heat transfer oil. Two methods were developed to measure the geometry of the microchannels. The first was based on image processing of microscope photographs, and the second involved an analysis of profilometer measurements. Both methods revealed that the exhaust channels (air channels) were, on average, smaller in cross-sectional area by 11% when compared to the design. The cross-sectional area of the oil channels were 8% smaller than their design. The hydraulic diameters for both channel geometries were close to their design. Hot air was used to simulate diesel engine exhaust. Thermal testing of the heat exchanger included measurements of heat transfer, effectiveness, air pressure drop, and oil pressure drop. The experimental results for the heat transfer and effectiveness agreed well with the model predictions. However, the measured air pressure drop and oil pressure drop were significantly higher than the model. The discrepancy was attributed to the model's ideal representation of the channel areas. Additionally, since the model did not account for the complex flow path of the oil stream, the measured oil pressure drop was much higher than the predicted pressure drop. The highest duty of the Heat Recovery Unit observed during the experimental tests was 12.3 kW and the highest effectiveness was 97.8%. To examine the flow distribution through the air channels, velocity measurements were collected at the outlet of the Heat Recovery Unit using a hot film anemometer. For unheated air flow, the profile measurements indicated that there was flow maldistribution. A temperature profile was measured and analyzed for a thermally loaded condition. / Graduation date: 2012
3

Design and performance of a small scale waste heat recovery unit

Ward, Christopher 05 December 2011 (has links)
A microchannel heat exchanger was designed for diesel waste heat recovery and its performance was evaluated. The 21x15x8 cm unit was constructed from diffusion brazed stainless steel lamina and weighed 11 kg. Operating from a 13.4 kW generator with an exhaust temperature of 500 °C the unit delivered 11.1 kW of thermal energy at the design point with an effectiveness of 0.87. If coupled with an organic Rankine bottoming cycle this has the potential of boosting system power output by 35%. Performance was found to be insensitive to cold side flow conditions. Soot accumulation was found to be problematic, which caused a steady exhaust pressure rise at the device but did not affect the thermal performance. / Graduation date: 2012

Page generated in 0.1328 seconds