• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Artin's Conjecture: Unconditional Approach and Elliptic Analogue

Sen Gupta, Sourav January 2008 (has links)
In this thesis, I have explored the different approaches towards proving Artin's `primitive root' conjecture unconditionally and the elliptic curve analogue of the same. This conjecture was posed by E. Artin in the year 1927, and it still remains an open problem. In 1967, C. Hooley proved the conjecture based on the assumption of the generalized Riemann hypothesis. Thereafter, the mathematicians tried to get rid of the assumption and it seemed quite a daunting task. In 1983, the pioneering attempt was made by R. Gupta and M. Ram Murty, who proved unconditionally that there exists a specific set of 13 distinct numbers such that for at least one of them, the conjecture is true. Along the same line, using sieve theory, D. R. Heath-Brown reduced this set down to 3 distinct primes in the year 1986. This is the best unconditional result we have so far. In the first part of this thesis, we will review the sieve theoretic approach taken by Gupta-Murty and Heath-Brown. The second half of the thesis will deal with the elliptic curve analogue of the Artin's conjecture, which is also known as the Lang-Trotter conjecture. Lang and Trotter proposed the elliptic curve analogue in 1977, including the higher rank version, and also proceeded to set up the mathematical formulation to prove the same. The analogue conjecture was proved by Gupta and Murty in the year 1986, assuming the generalized Riemann hypothesis, for curves with complex multiplication. They also proved the higher rank version of the same. We will discuss their proof in details, involving the sieve theoretic approach in the elliptic curve setup. Finally, I will conclude the thesis with a refinement proposed by Gupta and Murty to find out a finite set of points on the curve such that at least one satisfies the conjecture.
2

Artin's Conjecture: Unconditional Approach and Elliptic Analogue

Sen Gupta, Sourav January 2008 (has links)
In this thesis, I have explored the different approaches towards proving Artin's `primitive root' conjecture unconditionally and the elliptic curve analogue of the same. This conjecture was posed by E. Artin in the year 1927, and it still remains an open problem. In 1967, C. Hooley proved the conjecture based on the assumption of the generalized Riemann hypothesis. Thereafter, the mathematicians tried to get rid of the assumption and it seemed quite a daunting task. In 1983, the pioneering attempt was made by R. Gupta and M. Ram Murty, who proved unconditionally that there exists a specific set of 13 distinct numbers such that for at least one of them, the conjecture is true. Along the same line, using sieve theory, D. R. Heath-Brown reduced this set down to 3 distinct primes in the year 1986. This is the best unconditional result we have so far. In the first part of this thesis, we will review the sieve theoretic approach taken by Gupta-Murty and Heath-Brown. The second half of the thesis will deal with the elliptic curve analogue of the Artin's conjecture, which is also known as the Lang-Trotter conjecture. Lang and Trotter proposed the elliptic curve analogue in 1977, including the higher rank version, and also proceeded to set up the mathematical formulation to prove the same. The analogue conjecture was proved by Gupta and Murty in the year 1986, assuming the generalized Riemann hypothesis, for curves with complex multiplication. They also proved the higher rank version of the same. We will discuss their proof in details, involving the sieve theoretic approach in the elliptic curve setup. Finally, I will conclude the thesis with a refinement proposed by Gupta and Murty to find out a finite set of points on the curve such that at least one satisfies the conjecture.
3

Topics in Analytic Number Theory

Powell, Kevin James 31 March 2009 (has links) (PDF)
The thesis is in two parts. The first part is the paper “The Distribution of k-free integers” that my advisor, Dr. Roger Baker, and I submitted in February 2009. The reader will note that I have inserted additional commentary and explanations which appear in smaller text. Dr. Baker and I improved the asymptotic formula for the number of k-free integers less than x by taking advantage of exponential sum techniques developed since the 1980's. Both of us made substantial contributions to the paper. I discovered the exponent in the error term for the cases k=3,4, and worked the case k=3 completely. Dr. Baker corrected my work for k=4 and proved the result for k=5. He then generalized our work into the paper as it now stands. We also discussed and both contributed to parts of section 3 on bounds for exponential sums. The second part represents my own work guided by my advisor. I study the zeros of derivatives of Dirichlet L-functions. The first theorem gives an analog for a result of Speiser on the zeros of ζ'(s). He proved that RH is equivalent to the hypothesis that ζ'(s) has no zeros with real part strictly between 0 and ½. The last two theorems discuss zero-free regions to the left and right for L^{(k)}(s,χ).

Page generated in 0.0327 seconds