Spelling suggestions: "subject:"creating anda cooling"" "subject:"creating ando cooling""
31 |
Development, characterization and evaluation of switchable façade elements / Développement, caractérisation et évaluation d’éléments de façades commutablesPflug, Thibault 06 July 2016 (has links)
Un niveau important d’isolation des parois de bâtiments peut diminuer le refroidissement du bâtiment en été, quand les conditions extérieures sont favorables. Dans cette thèse, le concept d’isolations commutable, est développé : pendant les périodes de refroidissement, l’isolation commutable peut être désactivée pour refroidir la masse du bâtiment pendant la nuit. Pendant les périodes de chauffage, ce concept peut être utilisé pour utiliser les gains solaires. Dans cette thèse, le potentiel des isolations commutables est étudié pour des bureaux dans un climat continental européen. En outre, deux nouveaux concepts d'isolations commutables sont introduits et développés et caractérisés expérimentalement. Un modèle nodal détaillé a été mis en place, validé et utilisé pour conduire une étude paramétrique. Le potentiel des isolations commutables a été étudié à l’aide de simulations énergétiques dynamiques du bâtiment qui ont montré que des réductions importantes des besoins de chauffage et de refroidissement ainsi que des heures d'inconfort en été peuvent être atteintes. Plusieurs stratégies de contrôle ont été mises au point, introduites et comparées. L'influence de la masse thermique a également été étudiée, ainsi que l'influence de l'orientation ou du cadre des éléments. / Important thermal insulation levels can prevent the building to cool down during the cooling period, when the external conditions are favorable. In this thesis, the concept of switchable insulation is developed: during the cooling period, the insulation can be deactivated during the night to let the heat flow out. During the heating period, the switchable insulation can be deactivated whenever solar gains can be used. In this thesis the potential of switchable insulation for an European continental climate and for office buildings is investigated. Also, two new concepts of switchable insulation are introduced, developed and characterized experimentally. A detailed thermal model has been introduced, validated and used for a parametric analysis. The potential of switchable insulation is investigated on a building level, showing that important reductions of the heating and cooling load as well as summer discomfort hours can be achieved. Several control strategies have been developed, introduced and compared. The influence of thermal mass was also investigated, as well as the influence of the orientation or the elements’ frame.
|
32 |
Moderní bioplynová stanice jako součást „Smart Regions“ / Modern Biogas Station as Part of "Smart Regions"Horák, Jakub January 2015 (has links)
This thesis deals with the design of computational model of a biogas plant and its use in the concept of intelligent region with focusing on district heating and cooling network. The introduction contains review of technology used in the biogas plant. This review covers the description of modern biogas plants and determination of the energy and technology parameters for computational model of biogas plant. The next part of thesis describes analyze of the dynamics of the operation and the possibilities of using waste heat from biogas plant. The last and also the most important part is based on design of computational model of a biogas plant and design of connection of a biogas plant to the district heating and cooling network.
|
33 |
DEVELOPMENT, DESIGN, AND CONSTRUCTION OF A HUMAN-BUILDING INTERACTIONS LABORATORYSourabh Deepak Yadav (12224741) 20 April 2022 (has links)
<div>The evolution of existing building construction is envisioned as modular construction. Instead of on-site construction, buildings can be assembled on-site using prefabricated modular elements. These modular elements could integrate intelligent building technologies to enable autonomous, occupant responsive, scalable, cost-effective, and sustainable features. On-site assembly of modular construction elements would offer better quality control, decrease material waste and resources, with more predictable schedules. These building elements would allow more cost-effective integration of new intelligent sensors, adaptive interfaces, renewable energy and energy recovery technologies, comfort delivery, and resiliency technologies, making high-performance buildings more affordable. To explore and evaluate these modular and intelligent comfort delivery concepts and advanced approaches for interaction with occupants, a new Human-Building Interactions Laboratory (HBIL) has been designed and is under development. The facility has a modular construction layout with thermally active panels, and the interior surface temperature of each panel can be individually controlled using a hydronic system. Such configuration allows us to emulate different climate zones and building type conditions and perform studies such as the effect of different kinds of active building surfaces on thermal comfort, localized comfort delivery, and occupant comfort control. Moreover, each panel is reconfigurable to investigate different interior surface treatments for thermal, visual, and acoustic comfort conditions. <br></div><div>In this MS thesis work, the overall design approach of the facility is presented. Development, experimental investigation of thermal performance, and aligned design modifications of a prototype thermo-active wall panel are explained in detail. Detailed development of a 1-D transient numerical model for the prototype wall panel and its tuning and validation are also presented. Furthermore, the design and installation plan of the hydronic system for the HBIL facility are also presented with an initial commissioning plan.</div>
|
34 |
THERMOELECTRIC BUILDING ENVELOPE: MATERIAL CHARACTERIZATION, MODELING, AND EXPERIMENTAL PERFORMANCE EVALUATIONXiaoli Liu (5930732) 20 July 2022 (has links)
<p>In the United States, buildings are responsible for almost 40% of the country’s total energy consumption and 38% of the total greenhouse gas emissions. Researchers are constantly seeking sustainable and efficient energy generation solutions for buildings as society continues to cope with the intensifying energy crisis and environmental deterioration. Thermoelectric technology is one such solution that potentially can lead to significant energy recovery and conversion between waste or excess thermal energy and electrical energy. One promising application is integrating thermoelectric materials into the building envelope (TBE) for power generation and building heating and cooling without transporting energy among subsystems and refrigerant use. TBE can combine structural support and thermal storage with power generation and thermal-activated cooling and heating, thereby contributing to sustainable living and energy. </p>
<p>TBE technology is still in its early development stages. This dissertation aimed to develop a fundamental understanding of the characteristics, behaviors, operation, and control of TBE systems as energy-efficient measures for thermal energy harvesting and thermal comfort regulation and to address the significant research gaps concerning high-conversion efficiency materials and optimal module configuration as well as system deployment related to real-world applications. Accordingly, this dissertation focused on the following three key objectives: (1) development and characterization of new thermoelectric composite materials; (2) identification of optimal designs and controls of TBE and established mathematical models for performance simulation; and (3) quantification of the energy-saving benefits of TBE. </p>
<p>The following five aspects specifically were investigated:</p>
<p>(1)<em> Material development and characterization</em>. New thermoelectric cement composites were developed with cement and various additives, material concentrations, and fabrication methods in the laboratory. Their thermoelectric properties (e.g., Seebeck coefficient, thermal conductivity, electrical conductivity, power factor, and the figure of merit) were measured simultaneously and characterized at 300–350 K.</p>
<p>(2)<em> Module evaluation.</em> Commercially available thermoelectric modules (TEMs) were assessed using well-designed test apparatus in both the heat pumping and power generation modes. The test results validated the numerical model, which assisted with performance comparison and material selection between cement-based and commercial TEMs for the TBE prototype.</p>
<p>(3)<em> Prototype assessment. </em>A convective TBE prototype and a radiant TBE prototype were designed, assembled, and evaluated in a pair of controlled testing chambers. The TBE’s surface temperature, thermal capacity, and COP were assessed under summer and winter conditions. </p>
<p>(4)<em> Prototype modeling. </em>The first-principle-based numerical models of both the convective and radiant TBE prototypes were developed in Modelica. The modeling results indicated good agreement with the experimental data. The verified models were used to study the impacts of the design parameters and operating conditions on the heat pumping performance of TBE.</p>
<p>(5)<em> System simulation. </em>A TBE building system model was established by integrating the TBE prototype model within a building’s heat balance model, considering the building construction, climate condition, power control, etc. Its seasonal performance under various climate conditions was studied to identify the potential optimal operation and energy savings. </p>
<p>This dissertation confirmed several key findings in the areas of material development, system design and operation, and energy savings. The TBE achieved higher efficiency with a heat pump for heating than for cooling generally. The TBE heating system performed better than a conventional electric heater (efficiency assumed at 0.9). The measures that improved TBE heating efficiency were enhancing the material’s thermoelectric properties, optimizing the geometry and number of TEMs, and improving the boundary heat transfer of TEMs. </p>
<p>This dissertation concluded that the TBE system is a promising alternative to conventional heating systems in buildings. Furthermore, the knowledge gained will strengthen the understanding of thermoelectrics in the building domain and guide further development in TBE, as well as facilitate the operation of net-zero energy and carbon-neutral buildings. </p>
|
35 |
Residential Energy Report Card for University Students for Driving Behavioral Energy Reduction and for Measuring Behavior Impact on ConsumptionBhattarai, Saroj 31 May 2018 (has links)
No description available.
|
36 |
Systémy vytápění a chlazení v kancelářských provozech / Heating and cooling systems in office operationsDostál, Petr January 2020 (has links)
The diploma thesis deals with the design of the heating and cooling system, inclu-ding hot water preparation for the administrative part of the production hall. The first part of the thesis briefly discusses the history of heating and cooling of office buildings, legislative requirements and current solutions. The second part contains the design of the entire heating and cooling system with heat pump as a source of heat and cold. The final part of the thesis describes the experimental measure-ment and evaluation of the efficiency of the ice rink source.
|
37 |
Velkoplošné systémy pro vytápění a chlazení / Heating and cooling systemsPavlíček, Radek Unknown Date (has links)
The topic of this diploma thesis is large area heating and cooling systems. Theoretical part of this thesis is focused on thermal comfort of people in interier and on theoretical calculation of heat transfer and on large area heating and cooling systems. Second part is devided to two variants. First variant is design of a heating system in kindergarden with floor heating combined with plate heating radiators. Second variant is heating system with only plate heating radiators. As source of heat is used condensing gas boiler. Part of a design is preparation of hot water. Experimental part of the thesis contains measurements of coefficient of heat transfer in floor heating and wall heating.
|
38 |
Systémy vytápění a chlazení v polyfunkčním domu / Heating and cooling systems in a multifunctional buildingFuksa, Lukáš Unknown Date (has links)
The master´s thesis is about the design of heating and cooling of a multifunctional house. The building is functionally divided into parts of shops, administration and apartments. Thesis describes various cooling options and basic types and functions of air conditioning systems. Three variants of the system at the level for expanded building permits and their evaluation are developed. The selected variant is developed at the project level for the construction.
|
39 |
地球環境保全型建築・都市の環境・エネルギ-システムに関する研究中原, 信生, 坂本, 雄三, 久野, 覚, 伊藤, 尚寛, 鄭, 明傑, 山羽, 基, 奥宮, 正哉 03 1900 (has links)
科学研究費補助金 研究種目:一般研究(A) 課題番号:03402043 研究代表者:中原 信生 研究期間:1991-1994年度
|
Page generated in 0.0949 seconds