• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • 1
  • Tagged with
  • 6
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigating the role of heatshock on diabetic wound healing

Contractor, Taha January 2017 (has links)
The increasing occurrence of diabetes in the general population as a result of over nutrition and increasingly inactive lifestyle has led to an obesity epidemic which is set to grow over time. With an ever increasing obese population type 2 diabetes and cardiovascular complications are set to become the major causes of human mortality. Chronic non healing wounds are a major cause of mortality and morbidity in patients with type 2 diabetes. They are predominantly caused by macrophage dysfunction and a lack of migration of fibroblasts into the wound. This study aimed to investigate diabetic wound healing through development of an artificial scratch assay. An in vitro scratch assay developed in WS1 cells. The effect of heat shock treatments from 39°C to 45° was tested to determine if cell migration increased; however, no significant difference was seen. Mitomycin C was used to determine if wound closure occurred as a result of cell proliferation and migration or migration alone. 10μg/ml of mitomycin C inhibited cell division by 79.9% without exhibiting cytotoxicity over a 12h period. The effect of hyperglycaemia and heat shock was also tested and showed no significant difference when compared to control conditions, suggesting that fibroblast migration in vivo is hindered through other factors such as debridement or macrophage dysfunction in the wound. GLUT4 is present in insulin sensitive organs (liver, adipose and muscle) and is the major glucose transporter responsible for the clearance of glucose from the blood after a meal, thus playing a central role in glucose homeostasis. Monocytes are precursors to macrophages and can easily be isolated from whole blood. They have also been shown to express GLUT4 in response to insulin and could be used as model to assess inflammation in diabetes. A glucose uptake assay was developed in U937 cells using a fluorescent glucose analogue, 2NBDG. 2NBDG fluorescence was shown to be competitively inhibited by increasing concentrations of glucose suggesting that 2NBDG enters the cell through glucose transporters. 2NBDG uptake was also assessed at different pH and in presence of membrane fluidizers (DMSO, benzyl alcohol and phenethyl alcohol). Extremes of pH significantly reduced cell viability and only at pH 4 was 2NBDG fluorescence significantly reduced. Treatment with DMSO showed that at high concentrations (≤ 1.56%) cell viability was reduced with a concurrent reduction in 2NBDG fluorescence. The effect of benzyl alcohol and phenethyl alcohol was foundto be insignificant at the concentrations and time points tested. The presence of GLUT4 was also determined by flow cytometry and Western blotting and found to be situated in the cytoplasmic region of the cell. This study indicates that monocytes and macrophages could be a potential therapeutic target to improve diabetic wound healing as they are a source of growth factors and cytokines that can bring about resolution of inflammation and it is their dysfunction in diabetic wounds that causes poor clinical outcomes.
2

Effects of over-expression of a mitochondrial HSP70 cognate on the interaction between carbon and nitrogen metabolism in tobacco

Carre, Jane January 2000 (has links)
No description available.
3

The Role of Fgf and Its Downstream Effectors in Otic and Epibranchial Development in Zebrafish

Padanad, Mahesh 2011 August 1900 (has links)
In vertebrates, the otic placode forms inner ear and epibranchial placodes produce sensory ganglia within branchial clefts. Fibroblast growth factor (FGF) family of protein ligands from the surrounding tissues are responsible for otic and epibranchial placode induction. Members of pax2/5/8 family of transcription factors function as mediators during otic induction. To understand the temporal and spatial requirements of Fgf and their interaction with pax2/8 for otic induction, we used heat shock inducible transgenic lines of zebrafish to misexpress fgf3/8 and pax2a/8 under the control of hsp70 promoter. Loss of function studies were done to examine the functions of pax2/8 genes in regulating otic and epibranchial development. We show that global transient activation of hs:fgf3 or hs:fgf8 at mid-late gastrula stages (7-8 hpf) severely impairs otic induction, in part by disrupting formation of the principal signaling centers in the hindbrain. Additionally, mosaic studies show that high-level misexpression blocks otic fate cell-autonomously, whereas low to moderate levels promote otic development. At later stages high-level Fgf misexpression, both globally and locally does not inhibit otic fate, but rather causes a dramatic expansion of endogenous otic domains. Misexpression of hs:pax2a or hs:pax8 also expands endogenous otic domains but is not sufficient to bypass the requirement for Fgf signaling. Co-misexpression of Fgf with pax2a or pax8 leads to production of ectopic otic tissue in a broad range of cranial ectoderm. These data show that changes in timing, distribution and level of Fgf signaling and its downstream effectors influences otic induction. We show that otic and epibranchial placodes are induced at different times and by distinct mechanisms. Initially, Fgf from surrounding tissues induces otic expression of pax8 and sox3, which cooperate synergistically to establish otic fate. Subsequently, pax8 along with pax2a/pax2b downregulate foxi1 expression in otic cells, which is necessary for further otic development. Additionally, pax2/8 activate otic expression of fgf24, which induces epibranchial expression of sox3. Blocking functions of fgf24 or sox3 causes severe epibranchial deficiencies but has little effect on otic development. These results support the model whereby the otic placode forms first and induces epibranchial placodes through pax2/8-dependent Fgf24 signaling.
4

Effects of Heatshock on the Na+/K+-ATPase in Locusta migratoria

HOU, NICHOLAS YUE 27 September 2011 (has links)
Most vertebrates suffer permanent damage after minutes of anoxia. Many insects however, have part of their life cycle in anoxia or constant hypoxia, such as during their egg-hatching phase, by living as deep burrowers, or at high altitudes. Insects are able to survive in anoxia from hours to days, or even months by developing various strategies through evolution. For example, the locusts (Locusta migratoria) enter a reversible coma during anoxia that is associated with an arrest of ventilation, and a reinitiation of ventilation when returned to normoxia. This coma is correlated with a surge in the concentration of extracellular potassium ions ([K+]o), and recovery from this reversible coma is dependent on re-establishing the functional [K+]o. Prior exposure to a sublethal heatshock (HS)-preconditioning grants locusts a temporary resilience to anoxia; however, the molecular mechanisms of this protection are still unclear. This project investigated the effects of HS-preconditioning on locusts’ ventilation, the total enzymatic activity of the Na+/K+-ATPase, as well as its distribution within the metathoracic ganglion and tested the hypothesis that HS-preconditioning alters locusts’ ventilation and increases the totally Na+/K+-ATPase activity and its concentration within neuronal membranes. I recorded electromyograms of locusts’ ventilatory motor patterns in the presence and absence of anoxic coma by placing a copper wire electrode on ventilatory muscles 161 or 173 in control and HS-preconditioned animals. In addition, I studied the enzymatic activity of the Na+/K+-ATPase using a pyruvate kinase/lactate dehydrogenase assay and the localization of the Na+/K+-ATPase using immunohistochemistry in control and HS-preconditioned locusts at different stages of coma. I found that the ventilatory cycle period was decreased and the ventilatory muscle burst duration was increased after recovery from anoxic coma in HS-preconditioned locusts. I also found that anoxia did not affect the activity or the localization of the Na+/K+-ATPase. However, HS-preconditioning increased the total activity of the Na+/K+-ATPase and the localization of the Na+/K+-ATPase within the neuronal membranes. From this project, I concluded that HSpreconditioning affected locusts’ ventilatory motor pattern after recover from anoxia and increased the total activity and the neuronal membrane localization of the Na+/K+-ATPase. / Thesis (Master, Biology) -- Queen's University, 2011-09-26 13:14:48.472
5

Analysis of the Mycoplasma hominis hsp70 gene and development of a PCR ELISA assay.

Shearer, Nicollette. 23 December 2013 (has links)
Mycoplasmas conform most closely with the theoretical concept of 'minimum cells', existing as the smallest, free-living organisms capable of self-replication. They survive as parasites of plants, insects, animals or humans, with the most common human colonising species being Mycoplasma hominis. M. hominis has been characterised as a human pathogen responsible for a variety of infections, which pose a significant threat particularly to immunocompromised patients and neonates. However little has been elucidated about the cell physiology and molecular structure of this organism. Of interest to this study were the investigation of the heat shock response of M. hominis and the diagnostic assays used for its detection. The heat shock response is a ubiquitous physiological feature of all organisms and displays unprecedented conservation. This phenomenon is particularly evident in the 70 kDa family of heat shock proteins (hsp70) which exhibits a high degree of homology between different species. The hsp70 gene from M. hominis was cloned and preliminary partial sequencing indicated the similarity with other hsp70 homologs. The regulation of hsp70 expression at the transcriptional and translational levels was investigated. The level of hsp70 mRNA was found to increase correspondingly in response to heat shock, more visibly than the level of hsp70 protein. However imrnunochemical studies of the M. hominis hsp70 translation product demonstrated further the homology with other species. To facilitate rapid diagnosis of M. hominis infections, a PCR ELISA diagnostic assay was developed and optimised. The amplification of a conserved region of the M. hominis 16S rRNA gene was linked to subsequent hybridisation to an appropriate capture probe in a microtiter plate format. The sensitivity of the assay was comparable to other molecular assays although the PCR ELISA produces more rapid results and is less labour intensive. / Thesis (M.Sc.)-University of Natal, Pietermaritzburg, 1998.
6

Heat Tolerance, Temperature Acclimation, Acute Oxidative Damage and Canalization of Haemoglobin Expression in Daphnia

Williams, Patricia J., Dick, Kenneth B., Yampolsky, Lev Y. 01 May 2012 (has links)
Daphnia is a widespread freshwater zooplankton species, which is both a classic and emerging new model for research in ecological physiology, ecotoxicology and evolutionary biology of adaptation to novel environments. Heat tolerance in Daphnia is known to depend both upon evolutionary history of a genotype and on individuals' acclimation to elevated temperature and to correlate with the level of haemoglobin expression. We demonstrate the existence of north-south gradient of heat tolerance in North American D. pulex, which is not associated with any parallel changes in haemoglobin expression. Geographically distinct clones differ in the way their haemoglobin expression changes due to acclimation to a sub-stressful (28°C) temperature, but these changes are not correlated with the latitude of clones' origin. Likewise, the effect of acclimation to sub-stressful temperature is independent from, and cannot be fully explained by, haemoglobin expression changes during acclimation. The degree of oxidative damage to haemoglobin, measured as the ratio of absorbance at 540:576 nm at the acclimation temperature, is a strong predictor of 28°C-acclimated Daphnia survival during an acute heat exposure. The comparison of haemoglobin expression in resistant and tolerant clones acclimated to different temperatures indicates that tolerant clones exhibit canalization of haemoglobin expression, possessing a high level of haemoglobin even at non-stressful temperatures. We discuss the evolutionary biology of adaptation and acclimation to elevated temperatures in an ecologically important component of freshwater ecosystems in the context of global climate change.

Page generated in 0.0534 seconds