Spelling suggestions: "subject:"heavymetals"" "subject:"hardmetals""
231 |
The Effects of Photosynthetic Bacteria and Mycorrhizae on Phytoremediation for Soils Contaminated by Heavy Metals (Cd, Cu, Pb and Zn)Tseng, Chii-ching 09 February 2009 (has links)
Heavy metals are one of the most important environmental pollutants. In recent years, many low cost stretages of bioremediation for contaminated sites by heavy metals, such as fungi, bacteria and plants have been investigated for their biosorption capacity towards heavy metals. The uses of plant species for remediate contaminated sites by heavy metals are so called phytoremediation. The purpose of the first parts of this study are to (1) evaluate bioavailability of Cadmium (Cd) in contaminated soil and phytoremediation potential by three plant species, Vetiveria zizanioides, Pteris multifida, and Alternanthera philoxeroides (Mart.), and (2) realized the influence of photosynthetic bacteria (PSB) on the uptake of Cd in the three species. The results showed that the Alternanthera philoxeroides (Mart.) could accumulate the highest concentration of Cd among the three species, in which the Cd concentration of plant tissue increased with the concentration in soil. The highest concentration of Cd (164.9 mg kg-1) was found in the below-ground parts of Alternanthera philoxeroides (Mart.) at the 8th week of culturing period. However, the species of Vetiveria zizanioides could accumulate the largest total Cd, up to 547.5 £gg/ plant, which thus extracted the greatest amounts of Cd from the soil. Therefore, in the first part of this study the species of Vetiveria zizanioides was concluded to be the best accumulator among the three plant species. In addition, the concentration of Cd in the species of Pteris multifida was found significantly increased after PSB was added into the soil, but the plants died later due to Cd stress. The experimental results also showed that PSB seemed to be not suitable for each species used in this study to accumulate Cd from Cd-contaminated soil.
In the second part of this research, both pot and field experiments were conducted to (1) evaluate bioavailability of copper (Cu), lead (Pb) and zinc (Zn) in contaminated soil and phytoremediation potential by domesticated plants, Bidens pilosa and Passiflora foetida inoculated with arbuscular mycorrhizal (AM) fungi, and to (2) compare the results of pot and field experiments. The plant species of Bidens pilosa inoculated with AM fungi had significantly higher Cu concentrations in the shoots and roots than non-inoculated plants. The plant species of Passiflora foetida inoculated with AM fungi also had significantly higher Cu and Pb concentrations in the roots than non-inoculated plants. When we found that the root dry weight of Passiflora foetida inoculated with AM fungi dramatically increased, the concentrations of Cu, Pb and Zn in the root of the plant species increased by 9-14 times, comparing with the plants without inoculation of AM fungi. The AM fungi have potential either to promot plant growth or to increase heavy metal accumulation. The values of element translocation proportion from root to shoot was Zn>Cu>Pb for the plant species in both pot and field experiments. For both experiments, the results of pot test and field test were significantly different. The concentrations of pot tests were found higher than the field tests, and some values of pot tests were even found significantly greater than those in the field tests.
In the third part of this study, the field experiments were conducted to test the feasibility of using domesticated vegetations for phytoremediation of the contaminated farmland. The objectives of this study were (1) to acquire information about the ability of five plant species growing wild in the polluted area to accumulate Cu, Pb and Zn, (2) to investigate the season effects on phytoremediaton of five plant species and evaluate the total uptake of heavy metal, and (3) to run both pot tests and a field trial of phytotremediation to compare their differences. The experimental results showed that three maximum toxic elements in a pot were 3020 mg kg-1 Pb, 232 mg kg-1 Cu and 1012 mg kg-1 Zn respectively. The Cu concentrations of the five plant species collected from the polluted plots ranged from 0.7 to 17.43 mg kg-1. The range of variation of Pb in plant tissues was measured varied from 2.29 to 81.65 mg kg−1, while a wide range of Zn concentrations was found from 12.84 to 192.85 mg kg-1 among the plants collected at the contaminated plots. In comparison to winter season, the Zn concentrations in Broussonetia papyrifera, Passiflora foetida and Saccharum sinensis collected in summer season was significantly higher. The higher Cu concentrations were obtained in both plant species of Bidens pilosa and Mimosa diplotricha in summer season. However, Pb concentrations in Saccharum sinensis collected in winter were significantly higher than those in the same plant species collected in summer. Bidens pilosa was also found having the highest total amount of Cu and Zn. The highest total amount of Pb was found in Mimosa diplotricha. For both plant species, both of the pot and field tests were different.
|
232 |
Tube-based field-portable X-ray fluorescence (FPXRF) as a qualitative screening tool for Resource Conservation and Recovery Act (RCRA) metals in children's products and comparison to total metals analyses to predict hazardous waste metals toxicity characteristic /Kohlbach, James M. January 2009 (has links)
Thesis (M.S.)--Rochester Institute of Technology, 2009. / Typescript. Includes bibliographical references (leaves 86-88).
|
233 |
Genetic engineering of S-layer of Caulobacter crescentus for bioremediation of heavy metalsPatel, Jigar J. January 2009 (has links)
Thesis (M.S.)--Bowling Green State University, 2009. / Document formatted into pages; contains viii, 38 p. : ill. Includes bibliographical references.
|
234 |
Approaches to assess heavy metal toxicity in the marine environmentFung, Chi-tuen., 馮志端. January 2006 (has links)
published_or_final_version / Environmental Management / Master / Master of Science in Environmental Management
|
235 |
Empirical investigation of water pollution control through use of Phragmites australisAl Akeel, Khaled January 2013 (has links)
This research study addresses a problem of water pollution caused by heavy and toxic metals Cd, Cr, Cu and Pb. The thesis proposes the use of the technique of phytoremediation using Phragmites australis (PA) plants that have the capacity to absorb and to accumulate such metals in their roots and leaves. The metal uptake and their location of accumulation in the PA plants were determined using flame atomic absorption spectroscopy (FAAS) and transmission electron microscopy (TEM) respectively. Leachates from contaminated plant biomass were mixed with silver nitrate to assess the manufacture of metal nanoparticles as an added value step in the process from remediation to biomass disposal. Silver nanoparticles were readily manufactured by the leachates without, with the exception of copper, any incorporation of the pollutant metal. The presence of copper in the manufactured silver nanoparticles may be of some commercial use. The results obtained show that PA plants will accumulate toxic metals when in hydroponic culture and that the majority of the accumulated metals are sequestered in the roots and do not enter the aerial parts of the plants in significant amounts. Silver nanoparticles were manufactured from the biomass using a low energy route with no additional chemicals, apart from silver nitrate thus reducing the environmental load that would otherwise be present if a chemical means of nanoparticle production was used.
|
236 |
Removal of heavy metals from industrial wastewater using polymer clay nanocomposites as novel adsorbents.Setshedi, Katlego. January 2014 (has links)
D. Tech. Chemical Engineering. / This research aims to improve the current state of wastewater treatment technologies by exploiting the characteristics and capabilities of nanomaterials. Also, it aims at protecting the environment and human health by minimizing exposure of toxic contaminants found in waters sources by treatment with cheaply engineered materials. The nanocomposites that will be employed in this study have shown to be effective for removing a number of heavy metals from aqueous solutions during trial experiment. The study is therefore carried out to reduce the water scarcity in South Africa by minimizing the contamination of remaining water resources. With industrial effluents the main targets, the aim is to design systems that will enable industries to recycle their wastewater instead of discharging into the environment. This study will therefore benefit the communities who solely depend on surface and ground water and again it will safe industrial bodies high costs of treating their wastewater with ineffective conventional methods. The research focuses on the application of polypyrrole-clay nanocomposites for removing heavy metals from wastewater streams. The research conducted hereby highlights the application of polymer based nanocomposites as suitable adsorbents for the remediation of the toxic chromium(VI) [Cr(VI)] from water. The work describes the preparation and characterization of the nanocomposites, their application to wastewater laden with Cr(VI) in both batch and continuous adsorption and finally understanding the adsorbent-adsorbate interactions and sorption mechanisms under various physico-chemical conditions.
|
237 |
Tolerance limits of selected protozoan and bacterial isolates to vanadium and nickel in wastewater systemsKamika, Ilunga January 2013 (has links)
D. Tech. Environmental, Water and Earth Sciences / Pollution of water sources with heavy metals is currently a global concern due to the detrimental effect of these metals on both human and animal health. To address this issue, biological treatment methods have been seen as the most effective and eco-friendly option of the available treatment processes of wastewater. The aim of this study was to compare the ability of selected bacterial isolates and indigenous protozoan to tolerate nickel and vanadium in wastewater systems in order to determine which group of organisms might play a major role in the removal of nickel and vanadium, even at high concentrations, in wastewater treatment systems.
|
238 |
Analysis of heavy metals in marine sediments and the determination of heavy metal profiles in dated sediments cores from Sai Kung Bay, HongKongLo, Chi-keung., 盧志強. January 1992 (has links)
published_or_final_version / Chemistry / Doctoral / Doctor of Philosophy
|
239 |
Mobilization of Lead and Zinc in Acid Sulfate Mine TailingsVazquez-Ortega, Angelica January 2008 (has links)
In this thesis, column experiments were conducted in order to determine the effect of irrigation with local groundwater on mobilization of lead and zinc in 50 years old sulfate-acid mine tailings. In addition, the influence of soluble oxalic acid, a common rhizosphere organic acid, was assessed by varying its concentration across an environmentally relevant range. In general, metal contaminant dissolution was not affected by the presence of oxalic acid. In both tailings, Zn mobilization was higher than Pb suggesting the presence of more kinetically labile Zn phases, regardless of the treatment used. Lead mobilization was also low because effluent solutions were near to equilibrium conditions with respect to gypsum, preventing Pb dissolution from Pb-sulfate minerals. Geochemical modeling also indicated that lead release was controlled by anglesite and plumbojarosite dissolution. Zinc release appears to be controlled by Zn-talc and goslarite.
|
240 |
Išplautžemių (Luvisols) užtaršos sunkiaisiais metalais vertinimas ir jų sorbcijos dirvožemio smulkiadispersėje frakcijoje modelinis tyrimas / BEWERTUNG DER LUVISOLS - BELASTUNG DURCH SCHWERMETALLE UND MODELLUNTERSUCHUNG IHRER SORPTION IN DER FEINDISPERSEN BODENFRAKTIONTrimirka, Virginijus 17 January 2006 (has links)
Technogenic pollution level with heavy metals (Cr, Pb, Ni, Cu, Zn) of different pedogenesis Luvisols by various physical chemical methods estimated. Their sorption capacity in soils clay fraction (< 0,005 mm) analyzed. The results obtained permitted to carry out the theoretical and experimental modeling of heavy metals sorption in clay fraction of Luvisols. There was determined that it’s heavy metals sorption capacity makes up to 2000 mg kg-1.
|
Page generated in 0.0332 seconds