• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Theory of X-ray Absorption Spectra and Spin Transfer Torque

Wessely, Ola January 2006 (has links)
<p>The subjects of the thesis are theoretical first principles calculations of X-ray absorption (XA) spectra and current induced spin transfer torque. XA spectra calculated from atomic multiplet theory and from band structure calculations, based on density functional theory for La<sub>0.7</sub>Sr<sub>0.3</sub>MnO<sub>3</sub> have been compared to experiment. The comparison shows that the effect of the core hole created in the XA process must be considered in the calculation. The theory by Mahan, Nozières and De Dominicis (MND) of dynamical core hole screening is generalised to multiband systems and implemented in first principle calculations. Calculations of the XA spectrum of graphite, including dynamical core hole screening, are shown to better reproduce the relative intensity of the peaks in the experimental spectrum compared to static calculations based on the local density of state of a core excited atom. In combination with experiments the developed method to calculate XA spectra is used to investigate the electronic structure of mixed valent Yb, hydrogen storage in carbon nanotubes and the structure of liquid water. Moreover, a method to calculate the current induced spin transfer torque in materials with a helical spin density wave from first principles has been developed. The method is applied to rare earth metals and it is shown that a current along the axis of spin rotation induces a torque which gives rise to a rotation of the magnetisation direction.</p>
2

Theory of X-ray Absorption Spectra and Spin Transfer Torque

Wessely, Ola January 2006 (has links)
The subjects of the thesis are theoretical first principles calculations of X-ray absorption (XA) spectra and current induced spin transfer torque. XA spectra calculated from atomic multiplet theory and from band structure calculations, based on density functional theory for La0.7Sr0.3MnO3 have been compared to experiment. The comparison shows that the effect of the core hole created in the XA process must be considered in the calculation. The theory by Mahan, Nozières and De Dominicis (MND) of dynamical core hole screening is generalised to multiband systems and implemented in first principle calculations. Calculations of the XA spectrum of graphite, including dynamical core hole screening, are shown to better reproduce the relative intensity of the peaks in the experimental spectrum compared to static calculations based on the local density of state of a core excited atom. In combination with experiments the developed method to calculate XA spectra is used to investigate the electronic structure of mixed valent Yb, hydrogen storage in carbon nanotubes and the structure of liquid water. Moreover, a method to calculate the current induced spin transfer torque in materials with a helical spin density wave from first principles has been developed. The method is applied to rare earth metals and it is shown that a current along the axis of spin rotation induces a torque which gives rise to a rotation of the magnetisation direction.

Page generated in 0.1104 seconds