• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optimal estimation and sensor selection for autonomous landing of a helicopter on a ship deck

Irwin, Shaun George 12 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: This thesis presents a complete state estimation framework for landing an unmanned helicopter on a ship deck. In order to design and simulate an optimal state estimator, realistic sensor models are required. Selected inertial, absolute and relative sensors are modeled based on extensive data analysis. The short-listed relative sensors include monocular vision, stereo vision and laser-based sensors. A state estimation framework is developed to fuse available helicopter estimates, ship estimates and relative measurements. The estimation structure is shown to be both optimal, as it minimises variance on the estimates, and flexible, as it allows for varying degrees of ship deck instrumentation. Deck instrumentation permitted ranges from a fully instrumented deck, equipped with an inertial measurement unit and differential GPS, to a completely uninstrumented ship deck. Optimal estimates of all helicopter, relative and ship states necessary for the autonomous landing on the ship deck are provided by the estimator. Active gyro bias estimation is incorporated into the helicopter’s attitude estimator. In addition, the process and measurement noise covariance matrices are derived from sensor noise analysis, rather than conventional tuning methods. A full performance analysis of the estimator is then conducted. The optimal relative sensor combination is determined through Monte Carlo simulation. Results show that the choice of sensors is primarily dependent on the desired hover height during the ship motion prediction stage. For a low hover height, monocular vision is sufficient. For greater altitudes, a combination of monocular vision and a scanning laser beam greatly improves relative and ship state estimation. A communication link between helicopter and ship is not required for landing, but is advised for added accuracy. The estimator is implemented on a microprocessor running real-time Linux. The successful performance of the system is demonstrated through hardware-in-the-loop and actual flight testing. / AFRIKAANSE OPSOMMING: Hierdie tesis bied ’n volledige sensorfusie- en posisieskattingstruktuur om ’n onbemande helikopter op ’n skeepsdek te laat land. Die ontwerp van ’n optimale posisieskatter vereis die ontwikkeling van realistiese sensormodelle ten einde die skatter akkuraat te simuleer. Die gekose inersie-, absolute en relatiewe sensors in hierdie tesis is op grond van uitvoerige dataontleding getipeer, wat eenoogvisie-, stereovisieen lasergegronde sensors ingesluit het. ’n Innoverende raamwerk vir die skatting van relatiewe en skeepsposisie is ontwikkel om die beskikbare helikopterskattings, skeepskattings en relatiewe metings te kombineer. Die skattingstruktuur blyk optimaal te wees in die beperking van skattingsvariansie, en is terselfdertyd buigsaam aangesien dit vir wisselende mates van skeepsdekinstrumentasie voorsiening maak. Die toegelate vlakke van dekinstrumentasie wissel van ’n volledig geïnstrumenteerde dek wat met ’n inersiemetingseenheid en ’n differensiële globale posisioneringstelsel (GPS) toegerus is, tot ’n algeheel ongeïnstrumenteerde dek. Die skatter voorsien optimale skattings van alle vereiste helikopter-, relatiewe en skeepsposisies vir die doeleinde van outonome landing op die skeepsdek. Aktiewe giro-sydige skatting is by die posisieskatter van die helikopter ingesluit. Die proses- en metingsmatrikse vir geruiskovariansie in die helikopterskatter is met behulp van ’n ontleding van sensorgeruis, eerder as gebruiklike instemmingsmetodes, afgelei. ’n Volledige werkingsontleding is daarna op die skatter uitgevoer. Die optimale relatiewe sensorkombinasie vir landing op ’n skeepsdek is met Monte Carlo-simulasie bepaal. Die resultate toon dat die keuse van sensors hoofsaaklik van die gewenste sweefhanghoogte gedurende die voorspellingstadium van skeepsbeweging afhang. Vir ’n lae sweefhanghoogte is eenoogvisie-sensors voldoende. Vir hoër hoogtes het ’n kombinasie van eenoogvisie-sensors en ’n aftaslaserbundel ’n groot verbetering in relatiewe en skeepsposisieskatting teweeggebring. ’n Kommunikasieskakel tussen helikopter en skip is nie ’n vereiste vir landing nie, maar word wel aanbeveel vir ekstra akkuraatheid. Die skatter is op ’n mikroverwerker met intydse Linux in werking gestel. Die suksesvolle werking van die stelsel is deur middel van hardeware-geïntegreerde simulasie en werklike vlugtoetse aangetoon.
2

The design and implementation of vision-based autonomous rotorcraft landing

De Jager, Andries Matthys 03 1900 (has links)
Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2011. / ENGLISH ABSTRACT: This thesis presents the design and implementation of all the subsystems required to perform precision autonomous helicopter landings within a low-cost framework. To obtain high-accuracy state estimates during the landing phase a vision-based approach, with a downwards facing camera on the helicopter and a known landing target, was used. An e cient monocular-view pose estimation algorithm was developed to determine the helicopter's relative position and attitude during the landing phase. This algorithm was analysed and compared to existing algorithms in terms of sensitivity, robustness and runtime. An augmented kinematic state estimator was developed to combine measurements from low-cost GPS and inertial measurement units with the high accuracy measurements from the camera system. High-level guidance algorithms, capable of performing waypoint navigation and autonomous landings, were developed. A visual position and attitude measurement (VPAM) node was designed and built to perform the pose estimation and execute the associated algorithms. To increase the node's throughput, a compression scheme is used between the image sensor and the processor to reduce the amount of data that needs to be processed. This reduces processing requirements and allows the entire system to remain on-board with no reliance on radio links. The functionality of the VPAM node was con rmed through a number of practical tests. The node is able to provide measurements of su cient accuracy for the subsequent systems in the autonomous landing system. The functionality of the full system was con rmed in a software environment, as well as through testing using a visually augmented hardware-in-the-loop environment. / AFRIKAANSE OPSOMMING: Hierdie tesis beskryf die ontwikkeling van die substelsels wat vir akkurate outonome helikopter landings benodig word. 'n Onderliggende doel was om al die ontwikkeling binne 'n lae-koste raamwerk te voltooi. Hoe-akkuraatheid toestande word benodig om akkurate landings te verseker. Hierdie metings is verkry deur middel van 'n optiese stelsel, bestaande uit 'n kamera gemonteer op die helikopter en 'n bekende landingsteiken, te ontwikkel. 'n Doeltreffende mono-visie posisie-en-orientasie algoritme is ontwikkel om die helikopter se posisie en orientasie, relatief tot die landingsteiken, te bepaal. Hierdie algoritme is deeglik ondersoek en vergelyk met bestaande algoritmes in terme van sensitiwiteit, robuustheid en uitvoertyd. 'n Optimale kinematiese toestandswaarnemer, wat metings van GPS en inersiele sensore kombineer met die metings van die optiese stelsel, is ontwikkel en deur simulasie bevestig. Hoe-vlak leidingsalgoritmes is ontwikkel wat die helikopter in staat stel om punt-tot-punt navigasie en die landingsprosedure uit te voer. 'n Visuele posisie-en-orientasie meetnodus is ontwikkel om die mono-visie posisie-en orientasie algoritmes uit te voer. Om die deurset te verhoog is 'n saampersingsalgoritme gebruik wat die hoeveelheid data wat verwerk moet word, te verminder. Dit het die benodigde verwerkingskrag verminder, wat verseker het dat alle verwerking op aanboord stelsels kan geskied. Die meetnodus en mono-visie algoritmes is deur middel van praktiese toetse bevestig en is in staat om metings van voldoende akkuraatheid aan die outonome landingstelsel te verskaf. Die werking van die volledige stelsel is, deur simulasies in 'n sagteware en hardeware-indie- lus omgewing, bevestig.

Page generated in 0.1011 seconds