Spelling suggestions: "subject:"helicopters -- 1anding"" "subject:"helicopters -- canding""
1 |
Optimal estimation and sensor selection for autonomous landing of a helicopter on a ship deckIrwin, Shaun George 12 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2014. / ENGLISH ABSTRACT: This thesis presents a complete state estimation framework for landing an unmanned
helicopter on a ship deck. In order to design and simulate an optimal state estimator,
realistic sensor models are required. Selected inertial, absolute and relative sensors
are modeled based on extensive data analysis. The short-listed relative sensors include
monocular vision, stereo vision and laser-based sensors.
A state estimation framework is developed to fuse available helicopter estimates, ship
estimates and relative measurements. The estimation structure is shown to be both
optimal, as it minimises variance on the estimates, and flexible, as it allows for varying
degrees of ship deck instrumentation. Deck instrumentation permitted ranges
from a fully instrumented deck, equipped with an inertial measurement unit and differential
GPS, to a completely uninstrumented ship deck. Optimal estimates of all
helicopter, relative and ship states necessary for the autonomous landing on the ship
deck are provided by the estimator. Active gyro bias estimation is incorporated into
the helicopter’s attitude estimator. In addition, the process and measurement noise
covariance matrices are derived from sensor noise analysis, rather than conventional
tuning methods.
A full performance analysis of the estimator is then conducted. The optimal relative
sensor combination is determined through Monte Carlo simulation. Results show
that the choice of sensors is primarily dependent on the desired hover height during
the ship motion prediction stage. For a low hover height, monocular vision is
sufficient. For greater altitudes, a combination of monocular vision and a scanning
laser beam greatly improves relative and ship state estimation. A communication
link between helicopter and ship is not required for landing, but is advised for added
accuracy. The estimator is implemented on a microprocessor running real-time Linux. The
successful performance of the system is demonstrated through hardware-in-the-loop
and actual flight testing. / AFRIKAANSE OPSOMMING: Hierdie tesis bied ’n volledige sensorfusie- en posisieskattingstruktuur om ’n onbemande
helikopter op ’n skeepsdek te laat land. Die ontwerp van ’n optimale posisieskatter
vereis die ontwikkeling van realistiese sensormodelle ten einde die skatter
akkuraat te simuleer. Die gekose inersie-, absolute en relatiewe sensors in hierdie
tesis is op grond van uitvoerige dataontleding getipeer, wat eenoogvisie-, stereovisieen
lasergegronde sensors ingesluit het.
’n Innoverende raamwerk vir die skatting van relatiewe en skeepsposisie is ontwikkel
om die beskikbare helikopterskattings, skeepskattings en relatiewe metings te kombineer.
Die skattingstruktuur blyk optimaal te wees in die beperking van skattingsvariansie,
en is terselfdertyd buigsaam aangesien dit vir wisselende mates van skeepsdekinstrumentasie
voorsiening maak. Die toegelate vlakke van dekinstrumentasie
wissel van ’n volledig geïnstrumenteerde dek wat met ’n inersiemetingseenheid en ’n
differensiële globale posisioneringstelsel (GPS) toegerus is, tot ’n algeheel ongeïnstrumenteerde
dek. Die skatter voorsien optimale skattings van alle vereiste helikopter-,
relatiewe en skeepsposisies vir die doeleinde van outonome landing op die skeepsdek.
Aktiewe giro-sydige skatting is by die posisieskatter van die helikopter ingesluit. Die
proses- en metingsmatrikse vir geruiskovariansie in die helikopterskatter is met behulp
van ’n ontleding van sensorgeruis, eerder as gebruiklike instemmingsmetodes,
afgelei. ’n Volledige werkingsontleding is daarna op die skatter uitgevoer. Die optimale relatiewe
sensorkombinasie vir landing op ’n skeepsdek is met Monte Carlo-simulasie
bepaal. Die resultate toon dat die keuse van sensors hoofsaaklik van die gewenste
sweefhanghoogte gedurende die voorspellingstadium van skeepsbeweging afhang.
Vir ’n lae sweefhanghoogte is eenoogvisie-sensors voldoende. Vir hoër hoogtes het
’n kombinasie van eenoogvisie-sensors en ’n aftaslaserbundel ’n groot verbetering in
relatiewe en skeepsposisieskatting teweeggebring. ’n Kommunikasieskakel tussen helikopter
en skip is nie ’n vereiste vir landing nie, maar word wel aanbeveel vir ekstra
akkuraatheid.
Die skatter is op ’n mikroverwerker met intydse Linux in werking gestel. Die suksesvolle werking van die stelsel is deur middel van hardeware-geïntegreerde simulasie
en werklike vlugtoetse aangetoon.
|
2 |
The design and implementation of vision-based autonomous rotorcraft landingDe Jager, Andries Matthys 03 1900 (has links)
Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2011. / ENGLISH ABSTRACT: This thesis presents the design and implementation of all the subsystems required to
perform precision autonomous helicopter landings within a low-cost framework.
To obtain high-accuracy state estimates during the landing phase a vision-based approach,
with a downwards facing camera on the helicopter and a known landing target, was used.
An e cient monocular-view pose estimation algorithm was developed to determine the
helicopter's relative position and attitude during the landing phase. This algorithm was
analysed and compared to existing algorithms in terms of sensitivity, robustness and
runtime.
An augmented kinematic state estimator was developed to combine measurements from
low-cost GPS and inertial measurement units with the high accuracy measurements from
the camera system. High-level guidance algorithms, capable of performing waypoint navigation
and autonomous landings, were developed.
A visual position and attitude measurement (VPAM) node was designed and built to perform
the pose estimation and execute the associated algorithms. To increase the node's
throughput, a compression scheme is used between the image sensor and the processor
to reduce the amount of data that needs to be processed. This reduces processing requirements
and allows the entire system to remain on-board with no reliance on radio
links. The functionality of the VPAM node was con rmed through a number of practical
tests. The node is able to provide measurements of su cient accuracy for the subsequent
systems in the autonomous landing system.
The functionality of the full system was con rmed in a software environment, as well as
through testing using a visually augmented hardware-in-the-loop environment. / AFRIKAANSE OPSOMMING: Hierdie tesis beskryf die ontwikkeling van die substelsels wat vir akkurate outonome helikopter
landings benodig word. 'n Onderliggende doel was om al die ontwikkeling binne
'n lae-koste raamwerk te voltooi.
Hoe-akkuraatheid toestande word benodig om akkurate landings te verseker. Hierdie
metings is verkry deur middel van 'n optiese stelsel, bestaande uit 'n kamera gemonteer
op die helikopter en 'n bekende landingsteiken, te ontwikkel. 'n Doeltreffende mono-visie
posisie-en-orientasie algoritme is ontwikkel om die helikopter se posisie en orientasie, relatief
tot die landingsteiken, te bepaal. Hierdie algoritme is deeglik ondersoek en vergelyk
met bestaande algoritmes in terme van sensitiwiteit, robuustheid en uitvoertyd.
'n Optimale kinematiese toestandswaarnemer, wat metings van GPS en inersiele sensore
kombineer met die metings van die optiese stelsel, is ontwikkel en deur simulasie bevestig.
Hoe-vlak leidingsalgoritmes is ontwikkel wat die helikopter in staat stel om punt-tot-punt
navigasie en die landingsprosedure uit te voer.
'n Visuele posisie-en-orientasie meetnodus is ontwikkel om die mono-visie posisie-en orientasie algoritmes uit te voer. Om die deurset te verhoog is 'n saampersingsalgoritme
gebruik wat die hoeveelheid data wat verwerk moet word, te verminder. Dit het die
benodigde verwerkingskrag verminder, wat verseker het dat alle verwerking op aanboord
stelsels kan geskied. Die meetnodus en mono-visie algoritmes is deur middel van praktiese
toetse bevestig en is in staat om metings van voldoende akkuraatheid aan die outonome
landingstelsel te verskaf.
Die werking van die volledige stelsel is, deur simulasies in 'n sagteware en hardeware-indie-
lus omgewing, bevestig.
|
Page generated in 0.1011 seconds