• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The infrared spectrum of the helium molecular ion helium-3 positive helium-4.

Yu, Nan. January 1988 (has links)
This dissertation is concerned with the first experimental observation of the vibration-rotation spectrum of the helium molecular ion, ³He⁴He⁺. The Doppler-tuned fast-beam laser-resonance technique has been used. The ions produced in an electron-impact ion source form an ion beam of a few KeV and then intersect nearly colinearly with a CO IR laser beam of fixed frequency. The velocity of the ions is scanned to tune the ions into resonance with the laser frequency. Subsequent resonance detection is realized by using charge exchange processes of the ion with a target gas. Twelve spectral lines have been measured which correspond to nine different vibration-rotation transitions of the R branch in the fundamental band of the ground state of ³He⁴He⁺. The combination of the kinematic compression of the fast-beam method and the special frequency stabilization of the CO laser render an experimental accuracy of 0.0006 cm⁻¹ or 0.4 ppm. The accuracy exceeds that of the available theory by three orders of magnitude. The narrow spectral linewidth also allows partial resolution of the magnetic hyperfine structure due to helium-3. A hyperfine structure calculation has been carried out using a numerical multi-configuration self-consistent-field method. The agreement between the calculation and the observation is very satisfying.
2

OBSERVATION OF THE INFRARED SPECTRUM OF THE HELIUM-HYDRIDE MOLECULAR ION

Tolliver, David Edward January 1980 (has links)
This dissertation describes the first high-precision observation of the infrared spectrum of the helium hydride molecular ion HeH⁺. The frequencies of five vibrational-rotational transitions in the range 1700-1900 cm⁻¹ in the X¹Σ⁺ ground electronic state of ⁴HeH⁺ have been measured to ±0.002 cm⁻¹ (±1 ppm). The Doppler tuned ion beam laser spectroscopic method was used in making the measurements: In a region of constant electrostatic potential, an HeH⁺ ion beam of several keV energy is intercepted at a small angle by a beam from a carbon monoxide infrared gas laser. The energy of the ion beam is adjusted to Doppler-shift an ion transition into resonance with a nearby laser line. On resonance the laser light stimulates transitions to take place. If the resonating states differ in population, the laser-induced transitions produce a net population transfer. The occurrence of population transfer is detected by monitoring the transmission of the ion beam through a gas target downstream from the laser beam interaction region. The transmission through the target is dependent upon the ion beam vibrational-state population distribution and therefore is sensitive to changes in the population distribution, because the cross-section for charge-exchange neutralization of an incident ion is dependent upon the vibrational state of the ion. The current interest in molecular ions in general, and in HeH⁺ in particular, is explained. The existing theory of the structure of HeH⁺ is summarized and a comprehensive listing of theoretical treatments of the structure of HeH⁺ is given. The meager previous experimental work on HeH⁺ is reviewed. The principles of the Doppler tuned ion beam laser resonance method are discussed and the experimental apparatus used is described in detail. The acquisition and analysis of the data is described and the results are compared with the best existing theoretical predictions of the transition frequencies. The present experimental values (given by D. E. Tolliver, G. A. Kyrala, and W. H. Wing, Phys. Rev. Lett. 43, 1719) for the measured transitions are (with the corresponding values calculated by D. L. Bishop and L. M. Cheung, J. Mol. Spectrosc. 75, 462, given in parentheses): (v,J)=(1,11)↔(0,12), 1855.905 cm⁻¹ (1856.152 cm⁻¹); (1,12)↔(0,13), 1751.971 cm⁻¹ (1752.198 cm⁻¹); (2,8)↔(1,9), 1896.992 cm⁻¹ (1897.139 cm⁻¹); (2,9)↔(1,10), 1802.349 cm⁻¹ (1802.492 cm⁻¹); and (2,10)↔(1,11), 1705.543 cm⁻¹ (1705.684 cm⁻¹). It is seen that the present experimental values deviate from the theory by typically 0.2 cm⁻¹, and are two orders of magnitude more precise than the theoretical values.

Page generated in 0.065 seconds