• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 9
  • 6
  • 4
  • 3
  • 2
  • Tagged with
  • 43
  • 43
  • 13
  • 11
  • 10
  • 6
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Realisierung des 3 He-Kreislaufs zur 3 He-Magnet-Resonanz-Tomographie

Großmann, Tino. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2000--Mainz. / Auch als gedr. Diss.
12

Messung des Realteils der gebundenen 3He-Streulänge

Ketter, Wolfgang. January 2004 (has links) (PDF)
Mainz, Univ., Diss., 2004.
13

Messung der paritätsverletzenden Neutronenspin-Rotation in 139 La unter Einsatz von 3 He-Neutronenspin-Filtern

Hofmann, Dirk. Unknown Date (has links) (PDF)
Universiẗat, Diss., 2000--Mainz. / Auch als gedr. Diss.
14

Bestimmung des elektrischen Formfaktors des Neutrons G en in der Reaktion 3 He(e,e'n) bei einem Impulsübertrag Q 2 =0,67 (GeV/c) 2

Bermuth, Jörg Unknown Date (has links) (PDF)
Univ., Diss., 2001--Mainz
15

MEASUREMENT OF <i>F<sub>2</sub><sup>n</sup> /F<sub>2</sub><sup>p</sup></i> FROM DEEP INELASTIC ELECTRON SCATTERING OFF <i>A</i> = 3 MIRROR NUCLEI AT JEFFERSON LAB

Su, Tong 24 April 2020 (has links)
No description available.
16

Measurement of the EMC Effect of the Helium-3 Nucleus at Jefferson Lab

Hague, Tyler J. 19 April 2020 (has links)
No description available.
17

Spectrally-matched neutron detectors designed using computational adjoint S<sub>N for plug-in replacement of Helium-3

Walker, Scottie 20 September 2013 (has links)
Neutron radiation detectors are an integral part of the Department of Homeland Security (DHS) efforts to detect the illicit trafficking of radioactive or special nuclear materials into the U.S. In the past decade, the DHS has deployed a vast network of radiation detection systems at various key positions to prevent or to minimize the risk associated with the malevolent use of these materials. The greatest portion of this detection burden has been borne by systems equipped with 3He because of its highly desirable physical and nuclear properties. However, a dramatic increase in demand and dwindling supply, combined with a lack of oversight for the existing 3He stockpile has produced a critical shortage of this gas which has virtually eliminated its viability for detector applications. A number of research efforts have been undertaken to develop suitable 3He replacements; however, these studies have been solely targeted toward simple detection cases where the overall detection efficiency is the only concern. For these cases, an insertion of additional detectors or materials can produce reaction rates that are sufficient, because the neutron spectral response is essentially irrelevant. However, in applications such as safeguards, non-proliferation efforts, and material control and accountability programs (MC&A), a failure to use detectors that are spectrally matched to 3He can potentially produce dire consequences. This is because these more difficult detection scenarios are associated with fissile material assessments for 239Pu and other actinides and these analyses have almost universally been calibrated to an equivalent 3He response. In these instances, a “simple” detector or material addition approach is neither appropriate nor possible, due to influences resulting from the complex nature of neutron scattering in moderators, cross sections, gas pressure variations, geometries, and surrounding structural interference. These more challenging detection cases require a detailed computational transport analysis be performed for each specific application. A leveraged approach using adjoint transport computations that are validated by forward transport and Monte Carlo computations and laboratory measurements can address these more complex detection cases and this methodology was utilized in the execution of the research. The initial task was to establish the fidelity of a computational approach by executing radiation transport models for existing BF3 and 3He tubes and then comparing the modeling results to laboratory measurements made using these identical devices. Both tubes were 19.6 cm in height, 1-inch in diameter, and operated at 1 and 4 atm pressure respectively. The models were processed using a combination of forward Monte Carlo and forward and adjoint 3-D discrete ordinates (SN) transport methods. The computer codes MCNP5 and PENTRAN were used for all calculations of a nickel-shielded plutonium-beryllium (PuBe) source term that provided a neutron output spectra equivalent to that of weapons-grade plutonium (WGPu). Once the computational design approach was validated, the adjoint SN method was used to iteratively identify six distinct plug-in models that matched the neutron spectral response and reaction rate of a 1-inch diameter 3He tube with a length of 10 cm and operating at 4 atm pressure. The equivalent designs consist of large singular tubes and dual tubes containing BF3 gas, 10B linings, and/or 10B-loaded polyvinyl toluene (PVT). The reaction rate for each plug-in design was also verified using forward PENTRAN and MCNP5 calculations. In addition to the equivalent designs, the adjoint method also yielded various insights into neutron detector design that can lead to additional designs using a combination of different detector materials such as BF3/10B-loaded PVT, 10B-lined tubes/10B-loaded PVT, etc.
18

Parity violation and cold neutron capture: a study of the detailed interaction between hadrons

McCrea, Mark 26 January 2017 (has links)
Despite decades of theoretical and experimental investigation, the fundamental interactions between nucleons remains poorly understood. While the strong interaction is responsible for binding quarks into nucleons, and nucleons into nuclei, there is no consistent description of these processes. At the low energies where nucleon binding occurs, the interactions are in principle calculable from quantum chromodynamics, but the required non-perturbative calculations are not possible. Instead, different models have been created to describe different phenomena. These models require experimental input to constrain them. As the expected weak interaction effects are not seen in the strangeness-conserving systems as have been seen in other systems, it is believed that the strong interaction interferes with the weak interaction. Therefore by measuring parity-violating observables that occur due to the weak interaction, information can be gained about the strong interaction. The NPDGamma and n3He experiments are two complementary experiments that measured a parity violating observables in a few nucleon system. They ran on the Fundamental Neutron Physics Beamline at the Spallation Neutron Source. The NPDGamma experiment measured the parity violating directional asymmetry in the gamma ray's emission direction after polarized cold neutron capture on a liquid parahydrogen target using an array of 48 CsI detectors. The n3He experiment measured the parity violating directional asymmetry in the proton emission direction after polarized cold neutron capture on a gaseous $^{3}$He target. The capture occurs inside an ionization chamber that measures the proton emission direction. Both experiments have completed data taking with data analysis in an advanced state. These experiments should be able to be used with a number of already existing experimental results to constrain the models. I designed and assembled a pair of $^{3}$He ionization chambers that were used as beam monitors during the experiments. Using the lessons learned from the beam monitors, I then designed and assembled the ionization chamber that is the combined target and detector for the n3He experiment. The monitors and target chamber were examined to determine their charge collection properties and linearity after installation. One of the monitors was calibrated to determine the neutron flux from the output current. / February 2017
19

Study of thermal neutron flux from SuperKEKB in the Belle II commissioning detector

Dejong, Samuel Rudy 31 May 2017 (has links)
The Belle II detector is designed to collect data from the high luminosity electron-positron (e$^+$e$^-$) collisions of the SuperKEKB collider. It will explore the flavour sector of particle physics through precision measurements. The backgrounds of particles induced by the electron and positron beams will be much higher than in any previous \epem collider. It is important that these backgrounds be well understood in order to ensure appropriate measures are taken to protect the Belle II detector and minimize the impact of the backgrounds. In February 2016 electron and positron beams were circulated through the two 3 km vacuum pipe rings without being brought into collision during `Phase I' of SuperKEKB commissioning. Beam backgrounds were measured using Belle II's commissioning detector, BEAST II. BEAST II is composed of several small subdetectors, including helium-3 thermal neutron detectors. The BEAST II thermal neutron detector system and results from its Phase I running are presented in this dissertation. The Phase I experiment studies beam-gas interactions, where beam particles collide with residual gas atoms in the beampipes, and beam-beam interactions, where beam particles interact with each other. Simulations of these two types of backgrounds were performed using the Strategic Accelerator Design (SAD) and GEometry And Tracking (GEANT4) software packages. A method to account for the composition of the gas in the beampipes was developed in order to correctly analyse the beam-gas component of the background. It was also determined that the thermal neutron rates in the data on the positron beam were 2.18$^{+0.44}_{-0.42}$ times higher than the simulation of beam-gas interactions and 2.15$^{+0.34}_{-0.33}$ times higher for beam-beam interactions. The data on the electron beam were 1.32$^{+0.56}_{-0.36}$ times higher for beam-gas interactions and 1.91$^{+0.54}_{-0.48}$ time higher for beam-beam interactions. The impact of these studies on Belle II is discussed. / Graduate / samdejong86@gmail.com
20

Vieillissement du tritiure de palladium : caractérisation mécanique, état de l'hélium et modélisation / Ageing of palladium tritide : mechanical characterization, helium state and modelling

Segard, Mathieu 29 November 2010 (has links)
Le palladium est couramment utilisé pour le stockage du tritium, isotope radioactif de l’hydrogène, car il forme un tritiure réversible, à basse pression d’équilibre. La décroissance du tritium en hélium-3 provoque un vieillissement du tritiure, caractérisé notamment par l’apparition de bulles d’hélium-3, qui est étudié ici. De précédents travaux de modélisation du vieillissement avaient abouti à la création de deux modèles traitant, d’une part, de la germination des bulles d’hélium-3 (utilisation d’un automate cellulaire) et, d’autre part, de la croissance des bulles (mécanique des milieux continus). Ces modèles étaient fonctionnels, mais leur utilisation était limitée par le manque de données expérimentales d’entrée et de recalage. Ce travail de thèse a donc consisté à acquérir les données expérimentales les plus pertinentes pour améliorer la modélisation du vieillissement du tritiure de palladium. La première partie de ce travail a consisté à estimer les propriétés mécaniques du tritiure de palladium (limite d’élasticité, contrainte maximale, loi de comportement…), déduites de celles de l’hydrure et du deutérure de palladium, mesurées à l’aide d’essais de traction in situ. En seconde partie, la caractérisation du vieillissement a été entreprise, focalisée sur des observations de bulles dans le tritiure de palladium par microscopie électronique en transmission, des mesures de pression à l’intérieur des bulles par résonance magnétique nucléaire et des mesures de gonflement macroscopique du matériau par pycnométrie. Ces travaux ont conduit à des avancées significatives quant à la compréhension du vieillissement et ont permis d’améliorer considérablement sa modélisation. / Palladium is commonly used for the storage of tritium (the hydrogen radioactive isotope), since it forms a low-equilibrium-pressure and reversible tritide. Tritium decay into helium-3 is responsible for the ageing of the tritide, leading to the apparition of helium-3 bubbles for instance. Both experimental and theoretical aspects of this phenomenon are studied here.Previous works on ageing modelling led to two main models, dealing with:- Helium-3 bubbles nucleation (using a cellular automaton),- Bubbles growth (using continuum mechanics).These models were quite efficient, but their use was limited by the lack of input data and fitting experimental parameters.To get through these limitations, this work has consisted in studying the most relevant experimental data to improve the modelling of the palladium tritide ageing.The first part of this work was focused on the assessment of the mechanical properties of the palladium tritide (yield strength, ultimate strength, mechanical behaviour…). They were deduced from the in situ tensile tests performed on palladium hydride and deuteride.In the second part, ageing characterization was undertaken, mainly focusing on:- Bubbles observations in palladium tritide using transmission electron microscopy,- Internal bubble pressure measurements using nuclear magnetic resonance,- Macroscopic swelling measurements using pycnometry.The present work has led to significant progress in ageing understanding and has brought very valuable improvements to the modelling of such a phenomenon.

Page generated in 0.0462 seconds