• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Precise Fish Volume Estimation Using Underwater Helmholtz Resonance / 水中ヘルムホルツ共鳴を用いた魚体積の精密推定

Njane, Stephen Njehia 24 September 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(農学) / 甲第22076号 / 農博第2368号 / 新制||農||1072(附属図書館) / 学位論文||R1||N5230(農学部図書室) / 京都大学大学院農学研究科地域環境科学専攻 / (主査)教授 近藤 直, 准教授 小川 雄一, 教授 飯田 訓久 / 学位規則第4条第1項該当 / Doctor of Agricultural Science / Kyoto University / DFAM
2

Experimental investigation of air related tyre/road noise mechanisms

Eisenblaetter, Jochen January 2008 (has links)
Exterior vehicle noise has a very big impact when it comes to environmental noise pollution. Due to the decrease of the other noise sources of a passenger car, like power-train and air turbulence noise in the last decade, the tyre/road noise has become a more important part in the overall noise generation of a vehicle nowadays. It is considered as the main noise source in nearly all driving conditions, especially with increasing vehicle speed. The easiest idea to tackle this pollution is to introduce rules like speed-limits to control the noise at a certain area or time. More interesting, however, is to approach the problem of unwanted noise directly at the source. This Thesis, carried out at Loughborough University, aims to give a better understanding about the basic noise generation mechanisms at the tyre/road interface. Especially, the air related mechanisms of closed cavities are analysed. With the usage of a solid rubber tyre, unique measurements have been carried out and the results are compared to the theories already existing in the literature. These measurements reveal some of the strengths and weaknesses of the current understanding of air related noise generation.
3

The Relationship Between Resonant Frequency, Sound Hole Diameter, and Body Depth in Acoustic Guitars

Alyssa Caroline Fernandez (11181666) 01 August 2023 (has links)
<p>When a design feature (such as material choice, internal bracing pattern, guitar body depth, and sound hole diameter) of an acoustic guitar changes, the effect of the change on the guitar’s sound is not well understood. As a result, luthiers approximate how to make guitars that have resonant frequencies of around 95-105 Hertz (Hz), the frequency range which sounds “good.” The researcher designed a reconfigurable fixture that simulated an acoustic guitar body with a variable body depth and sound hole diameter. The researcher used this testing fixture to examine the relationship between sound hole diameter, body depth, and resonant frequency. She conducted an experimental parameter sweep, measuring frequency response functions (FRFs) to collect data on the first, Helmholtz, and second resonant frequencies of the simulated acoustic guitar. The researcher pinpointed the general trends in the correlation between resonant frequency, body depth, and sound hole diameter using the frequency data from the FRF measurements. She determined that as sound hole diameter increased, the first, Helmholtz, and second resonant frequencies increased; and as body depth and body volume increased, the first and Helmholtz resonant frequencies decreased, while the second resonant frequency increased up until a body depth of approximately 4.50” inches. Exploring alternative design features and material choices contributes to improving urban infrastructure by encouraging luthiers to make instruments with sustainable materials (National Academy of Engineering, Grand Challenges – Restore and Improve Urban Infrastructure, 2023).</p>

Page generated in 0.0756 seconds