• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A Variable Resolution Global Spectral Method With Finer Resolution Over The Tropics

Janakiraman, S 08 1900 (has links)
Variable resolution method helps to study the local scale phenomenon of interest within the context of global scale atmosphere/ocean dynamics. Global spectral methods based on spherical harmonics as basis functions are known to resolve a given function defined on the sphere, in an uniform manner. Though known for its mathematical elegance and higher order accuracy, global spectral methods are considered to be restrictive for developing mesh-refinement strategies. The only mesh refinement strategy available until now is due to the pioneering work of F. Schmidt. Schmidt transformation can study only one region with higher resolution. The study of tropical dynamics is an interesting theme due to the presence of teleconnections between various phenomena, especially Indian Monsoon and the El-Nino. The Inter-Tropical Convergence Zone (ITCZ)is a continental scale phenamenon. It is in the ITCZ, many monsoon systems and tropical cyclones do occur. To study such phenomena under variable resolution method, high resolution is required in the entire tropical belt. Hitherto such a kind of mesh refinement strategies were not available in global spectral models. In this work, a new variable resolution method is developed that can help to study the tropical sub-scale phenomena with high resolution, in global spectral models. A new conformal coordinate transformation named ’High resolution Tropical Belt Transformation(HTBT)’ is developed to generate high resolution in the entire tropical belt. Mathematical demonstrations are given to show the existence of additional conformal transformations available on the sphere, indicating additional degrees of freedom available to create variable resolution global spectral method. Variable resolution global spectral method with high resolution over tropics is created through HTBT. The restriction imposed by Schmidt’s framework that the map-ping factor of the transformation need to have a finite-decomposition in the spectral space of the transformed domain is relaxed, by introduction of a new framework. The new framework uses transformed spherical harmonics Bnm as basis for spectral computations. With the use of FFT algorithm and Gaussian quadrature, the efficiency of the traditional spectral method is retained with the variable resolution global spectral method. The newly defined basis functions Bnm are the eigenvalues of the transformed Laplacian operator . This property of Bnm provide an elegant direct solver for the transformed Helmholtz operator on the sphere. The transformed Helmholtz equations are solved accurately with the variable resolution method. Advection experiments conducted with variable resolution spectral transport scheme on the HTBT variable grid produces near-dispersion free advection on the tropical belt. Transport across homogeneous resolution regions produce very less dispersion errors. Transport of a feature over the poles result in severe grid representation errors. It is shown that an increase in resolution around the poles greatly reduces this error. Transport of a feature from a point close to poles but not over it, does not produce such representation errors. Fourth-order Runge-Kutta scheme improves the accuracy of the transport scheme. The second order Magazenkov time-scheme proves to be better accurate than the leap-frog scheme with Asselin filter. The non-divergent barotropic vorticity equation is tested with two exact solutions namely Rochas solution and Rossby-Haurwitz wave solutions. Each of the solution tests certain unique and contrasting characteristic of the system. The numerical behaviour of the solutions show non-linear interactions in them. The singularity at the poles, arising due to the unbounded nature of the latitudinal derivative of the map factor of HTBT, triggers Gibbs phenomena for certain functions. However the recent advances in spectral methods, especially spectral viscosity method and Boyd-Vandeven filtering strategy provide ways to control the Gibbs oscillation and recover higher accuracy; make the variable resolution global spectral method viable for accurate meteorological computations.
2

Simulations of flame stabilization and stability in high-pressure propulsion systems / Etude numérique de la stabilisation de flamme et des instabilités de combustions dans les systèmes de propulsion

Garby, Romain 05 June 2013 (has links)
Cette thèse se focalise sur la compréhension et la prédiction des instabilités de combustion dans les systèmes à haute pression. Elle s'oriente autour de la simulation numérique d’un banc d'essai, opéré à l'université de Purdue, comprenant un injecteur caractéristique des moteurs-fusées et dont les propriétés acoustiques peuvent varier à l'aide d’un tube d'injection mobile. Une méthode d'initialisation et d'allumage pour les calculs LES de chambres de combustions terminées par une tuyère est présentée. Un point de fonctionnement instable est choisi pour étudier le mécanisme de l'instabilité. Les simulations sont comparées aux résultats expérimentaux en terme de fréquence et structure du mode instable. La fonction de transfert de flamme est calculée à l'aide du modèle n − τ puis implémentée dans un solveur acoustique (ne résolvant que les perturbations acoustiques à partir de l'équation de Helmholtz en écoulement réactif). Différents modèles d'impédance de tuyère, extraits de la littérature, sont comparés et leurs impacts sur les résultats de stabilité sont analysés. Le théorème d’impédance translatée est implémenté dans le solveur acoustique pour analyser, à faible coût de calcul, l’influence de la variation de la longueur du tube d'injection. Des écarts entre les fréquences prédites et celles trouvées expérimentalement subsistent mais la carte de stabilité de l’expérience est bien reproduite. / This thesis focuses on the understanding and the prediction of combustion instability in high-pressure devices. A model rocket combustor, tested experimentally at Purdue University, with continuously variable acoustic properties, thanks to a variable-length injector tube, is simulated. A method to initialize and ignite Large-Eddy-Simulation (LES) calculation of combustion chamber surrounded by nozzle is proposed. An unstable operating point is then chosen to investigate the mechanism of the instability. The simulations are compared to experimental results in terms of frequency and mode structure. The flame transfer function is calculated using the n − τ model to feed an acoustic solver which solves only the acoustic perturbation using a Helmholtz equation in reacting flows. The importance of the modeling of the nozzles impedance is studied through the main theories in the literature. The impedance translation theorem is implemented in the acoustic solver to analyze at low cost the influence of the variation of the injector tube. Despite differences in frequency of the instability, the stability map of the experiment is well reproduced.
3

Solving incompressible Navier-Stokes equations on heterogeneous parallel architectures / Résolution des équations de Navier-Stokes incompressibles sur architectures parallèles hétérogènes

Wang, Yushan 09 April 2015 (has links)
Dans cette thèse, nous présentons notre travail de recherche dans le domaine du calcul haute performance en mécanique des fluides. Avec la demande croissante de simulations à haute résolution, il est devenu important de développer des solveurs numériques pouvant tirer parti des architectures récentes comprenant des processeurs multi-cœurs et des accélérateurs. Nous nous proposons dans cette thèse de développer un solveur efficace pour la résolution sur architectures hétérogènes CPU/GPU des équations de Navier-Stokes (NS) relatives aux écoulements 3D de fluides incompressibles.Tout d'abord nous présentons un aperçu de la mécanique des fluides avec les équations de NS pour fluides incompressibles et nous présentons les méthodes numériques existantes. Nous décrivons ensuite le modèle mathématique, et la méthode numérique choisie qui repose sur une technique de prédiction-projection incrémentale.Nous obtenons une distribution équilibrée de la charge de calcul en utilisant une méthode de décomposition de domaines. Une parallélisation à deux niveaux combinée avec de la vectorisation SIMD est utilisée dans notre implémentation pour exploiter au mieux les capacités des machines multi-cœurs. Des expérimentations numériques sur différentes architectures parallèles montrent que notre solveur NS obtient des performances satisfaisantes et un bon passage à l'échelle.Pour améliorer encore la performance de notre solveur NS, nous intégrons le calcul sur GPU pour accélérer les tâches les plus coûteuses en temps de calcul. Le solveur qui en résulte peut être configuré et exécuté sur diverses architectures hétérogènes en spécifiant le nombre de processus MPI, de threads, et de GPUs.Nous incluons également dans ce manuscrit des résultats de simulations numériques pour des benchmarks conçus à partir de cas tests physiques réels. Les résultats obtenus par notre solveur sont comparés avec des résultats de référence. Notre solveur a vocation à être intégré dans une future bibliothèque de mécanique des fluides pour le calcul sur architectures parallèles CPU/GPU. / In this PhD thesis, we present our research in the domain of high performance software for computational fluid dynamics (CFD). With the increasing demand of high-resolution simulations, there is a need of numerical solvers that can fully take advantage of current manycore accelerated parallel architectures. In this thesis we focus more specifically on developing an efficient parallel solver for 3D incompressible Navier-Stokes (NS) equations on heterogeneous CPU/GPU architectures. We first present an overview of the CFD domain along with the NS equations for incompressible fluid flows and existing numerical methods. We describe the mathematical model and the numerical method that we chose, based on an incremental prediction-projection method.A balanced distribution of the computational workload is obtained by using a domain decomposition method. A two-level parallelization combined with SIMD vectorization is used in our implementation to take advantage of the current distributed multicore machines. Numerical experiments on various parallel architectures show that this solver provides satisfying performance and good scalability.In order to further improve the performance of the NS solver, we integrate GPU computing to accelerate the most time-consuming tasks. The resulting solver can be configured for running on various heterogeneous architectures by specifying explicitly the numbers of MPI processes, threads and GPUs. This thesis manuscript also includes simulation results for two benchmarks designed from real physical cases. The computed solutions are compared with existing reference results. The code developed in this work will be the base for a future CFD library for parallel CPU/GPU computations.

Page generated in 0.0658 seconds