• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 120
  • 98
  • 95
  • 75
  • 54
  • 51
  • 50
  • 49
  • 45
  • 44
  • 39
  • 39
  • 38
  • 35
  • 34
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

The Role of CD40 in Naïve and Memory CD8+ T Cell Responses: a Dissertation

Hernandez, Maria Genevieve H. 16 May 2007 (has links)
Stimulation of CD40 on APCs through CD40L expressed on helper CD4+ T cells activates and “licenses” the APCs to prime CD8+ T cell responses. While other stimuli, such as TLR agonists, can also activate APCs, it is unclear to what extent they can replace the signals provided by CD40-CD40L interactions. In this study, we used an adoptive transfer system to re-examine the role of CD40 in the priming of naïve CD8+ T cells. We find an approximately 50% reduction in expansion and cytokine production of TCR-transgenic T cells in the absence of CD40 on all APCs, and on dendritic cells in particular. Moreover, CD40-deficient and CD40L-deficient mice fail to develop endogenous CTL responses after immunization and are not protected from a tumor challenge. Surprisingly, the role for CD40 and CD40L are observed even in the absence of CD4+ T cells; in this situation, the CD8+T cell itself provides CD40L. Furthermore, we show that although TLR stimulation improves T cell responses, it cannot fully substitute for CD40. We also investigated whether CD40-CD40L interactions are involved in the generation, maintenance, and function of memory CD8+ T cells. Using a virus infection system as well as a dendritic cell immunization system, we show that the presence of CD40 on DCs and other host APCs influences the survival of activated effector cells and directly affects the number of memory CD8+ T cells that are formed. In addition, memory CD8+ T cell persistence is slightly impaired in the absence of CD40. However, CD40 is not required for reactivation of memory CD8+ T cells. It seems that CD40 signals during priming also contribute to memory CD8+ T cell programming but this function can be independent of CD4+T cells, similar to what we showed for primary responses. Altogether, these results reveal a direct and unique role for CD40L on CD8+ T cells interacting with CD40 on APCs that affects the magnitude and quality of primary as well as memory CD8+ T cell responses.
42

Autoimmune Diabetes and Transplantation Tolerance Induced by Costimulation Blockade in NOD Mice: a Dissertation

Lambert, Julie 13 August 2007 (has links)
NOD mice model human type 1 diabetes and have been used to investigate tolerance induction protocols for islet transplantation in a setting of autoimmunity. Costimulation blockade-based tolerance protocols that induce prolonged skin and permanent islet allograft survival in non-autoimmune mice have failed in NOD mice. To investigate the underlying mechanisms, we generated NOD hematopoietic chimeras. We were able to show that dendritic cell maturation defects seen in NOD mice are partially corrected in mixed hematopoietic chimeras. Furthermore, skin allograft survival was dependent upon the phenotype of the bone marrow donor, demonstrating that in the NOD the resistance to tolerance induction resides in the hematopoietic compartment. In addition, we studied congenic NOD mice bearing insulin dependent diabetes (Idd) loci that reduce diabetes incidence. The incidence of diabetes is reduced in NOD.B6 Idd3 mice, and virtually absent in NOD.B6 Idd3Idd5 mice. Islet allograft survival in NOD.B6 Idd3 mice is prolonged as compared to NOD mice, and in NOD.B6 Idd3Idd5 mice islet allograft survival is similar to that achieved in C57BL/6 mice. Alloreactive CD8 T cell depletion in NOD mice treated with costimulation blockade is impaired, but is partially restored in NOD.B6 Idd3 mice, and completely restored in NOD.B6 Idd3Idd5 mice. Idd3 results from variations in Il2 gene transcription. We hypothesized insufficient levels of IL-2 in NOD mice contributes to impaired deletion of alloreactive CD8 T cells and shortened islet allograft survival. We observed using synchimeric mice that co-administration of exogenous IL-2 to NOD mice treated with costimulation blockade led to deletion of alloreactive CD8 T cells comparable to that in C57BL/6 mice and prolonged islet allograft survival. However, some Idd loci impaired the induction of transplantation tolerance. These data suggest that Idd loci can facilitate or impair induction of transplantation tolerance by costimulation blockade, and that Idd3 (IL-2) is critical component in this process.
43

Cross-Reactive Memory CD4<sup>+</sup> and CD8<sup>+</sup> T Cells Alter the Immune Response to Heterologous Secondary Dengue Virus Infections in Mice: A Dissertation

Beaumier, Coreen Michele 08 February 2008 (has links)
Dengue virus (DENV) infects 50-100 million people worldwide every year and is the causative agent of dengue fever (DF) and the more severe dengue hemorrhagic fever/dengue shock syndrome (DHF/DSS). There are four genetically and immunologically distinct DENV serotypes (DENV-1, DENV-2, DENV-3, and DENV-4). Evidence suggests that an increased risk for DHF/DSS during secondary infection with a heterologous DENV serotype is due to an immunopathological response mediated by serotype-cross-reactive memory T cells from the primary infection. Furthermore, epidemiological studies have shown that the sequence of infection with different DENV serotypes affects disease severity. Though much has been learned from human studies, there exist uncontrollable variables that are intrinsic in this system such as genetic factors and unknown infection histories. These factors can skew experimental results, making interpretations difficult. Therefore, a murine model to study the immunologic aspects of sequential dengue infections would be an asset to the field of dengue research. To examine the effect of sequential infection with different DENV serotypes on the CD8+ T cell response, we immunized Balb/c mice with a primary DENV infection on day 0 and subsequently challenged with a heterologous secondary DENV infection on day 28. We tested all possible sequences of infection with the four serotypes. We analyzed the T cell response to two previously defined epitopes on the DENV E (Ld-restricted) and NS3 (Kd-restricted) proteins. Using ELISPOT and intracellular cytokine staining, we measured the frequency of T cells secreting IFNγ and TNFα in response to stimulation with these epitopes during three phases: acute primary, acute secondary, and the memory phase after primary infection. We found that the T cell response in heterologous secondary infections was higher in magnitude than the response in acute primary infection or during the memory phase. We also found that the hierarchy of epitope specific responses, as measured by IFNγ secretion, was influenced by the sequence of infections. The adoptive transfer of immune serum or immune splenocytes suggested that memory T cells from the primary infection responded to antigens from the secondary infection. In vitroexperiments with T cell lines generated from mice with primary and secondary DENV infections suggested the preferential expansion of crossreactive memory T cells. In testing all of the different possible sequences of infection, we observed that two different sequences of infection (e.g., DENV-2 followed by DENV-1 versus DENV-2 followed by DENV-3) resulted in differential CD8+ T cell responses to the NS3 peptide even though both secondary infection serotypes contain the identical peptide sequence. To investigate this phenomenon, we examined the role of CD4+ T cell help on the memory CD8+ T cell response. We found that CD4+ T cell cytokine responses differ depending on the sequence of infection. In addition, it was also shown that crossreactivities of the CD4+ T cell response are also sequence-dependent. Moreover, denguespecific memory CD4+ T cells can augment the secondary CD8+ T cell response. Taken together, we demonstrated that this serotype sequence-dependent phenomenon is the result of differential help provided by cross-reactive memory CD4+T cells. The findings in this novel mouse model support the hypothesis that both CD4+ and CD8+ serotype-cross-reactive memory T cells from a primary dengue virus infection alter the immune response during a heterologous secondary dengue virus infection. These data further elucidate potential mechanisms whereby the specific sequence of infection with different dengue virus serotypes influences disease outcomes in humans.
44

Activation and Role of Memory CD8 T Cells in Heterologous Antiviral Immunity and Immunopathology in the Lung: A Dissertation

Chen, Hong 09 December 2002 (has links)
Each individual experiences many sequential infections throughout the lifetime. An increasing body of work indicates that prior exposure to unrelated pathogens can greatly alter the disease course during a later infection. This can be a consequence of a phenomenon known as heterologous immunity. Most viruses invade the host through the mucosa of a variety of organs and tissues. Using the intranasal mucosal route of infection, the thesis focused on studying modulation of lymphocytic choriomeningitis virus (LCMV)-specific memory CD8 T cells upon respiratory vaccinia virus (VV) infection and the role of these memory CD8 T cells in heterologous immunity against VV and altered immunopathology in the lung. The VV infection had a profound impact on memory T cells specific for LCMV. The impact included the up-regulation of CD69 expression on LCMV-specific CD8 memory T cells and the activation of their in vivoIFN-γ production and cytotoxic function. Some of these antigen-specific memory T cells selectively expanded in number, resulting in modulation of the original LCMV-specific T cell repertoire. In addition, there was a selective organ-dependent redistribution of these LCMV-specific memory T cell populations in secondary lymphoid tissue (the mediastinal lymph node and spleen) and the non-lymphoid peripheral (the lung) organs. The presence of these LCMV-specific memory T cells correlated with IFN-γ-dependent enhanced VV clearance, decreased mortality and marked changes in lung immunopathology. Thus, the participation of pre-existing memory T cells specific for unrelated agents can alter the dynamics of mucosal immunity. This is associated with an altered disease course in response to a pathogen. The roles for T cell cross-reactivity and cytokines in the modulation of memory CD8 T cells during heterologous memory CD8 T cell-mediated immunity and immunopathology were investigated. Upon VV challenge, there were preferential expansions of several LCMV-specific memory CD8 T cell populations. This selectivity suggested that cross-reactive responses played a role in this expansion. Moreover, a VV peptide, partially homologous to LCMV NP 205, stimulated LCMV-NP205 specific CD8 T cells, suggesting that NP205 may be a cross-reactive epitope. Poly I:C treatment of LCMV-immune mice resulted in a transient increase but no repertoire alteration of LCMV-epitope-specific CD8 T cells. These T cells did not produce IFN-γ in vivo. These results imply that poly I:C, presumably through its induced cytokines, was assisting in initial recruitment of LCMV-specific memory CD8 T cells in a nonspecific manner. VV challenge of LCMV-immune IL-12KO mice resulted in activation and slightly decreased accumulation of LCMV-specific CD8 T cells. Moreover, there was a dramatic reduction of in vivoIFN-γ production by LCMV-specific IL-12KO CD8 T cells in the lung. I interpreted this to mean that IL-12 was important to augment IFN-γ production by memory CD8 T cells upon TCR engagement by antigens and to induce further accumulation of activated memory CD8 T cells during the heterologous viral infection. This thesis also systematically examined what effect the sequence of two heterologous virus challenges had on viral clearance, early cytokine profiles and immunopathology in the lung after infecting mice immune to one virus with another unrelated viruses. Four unrelated viruses, [LCMV, VV, influenza A virus or murine cytomegalovirus (MCMV)], were used. There were many common changes observed in the acute response to VV as a consequence of prior immunity to any of three viruses, LCMV, MCMV or influenza A virus. These included the enhanced clearance of VV in the lung, associated with enhanced TH1 type responses with increased IFN-γ and suppressed pro-inflammatory responses. However, immunity to the three different viruses resulted in unique pathologies in the VV-infected lungs, but with one common feature, the substitution of lymphocytic and chronic mononuclear infiltrates for the usual acute polymorphonuclear response seen in non-immune mice. Immunity to influenza A virus appeared to influence the outcome of subsequent acute infections with any of the three viruses, VV, LCMV and MCMV. Most notably, influenza A virus-immunity protected against VV but it actually enhanced LCMV and MCMV titers. This enhanced MCMV replication was associated with enhanced TH1 type response and pro-inflammatory cytokine responses. Immunity to influenza A virus appeared to dramatically enhance the mild lymphocytic and chronic mononuclear response usually observed during acute infection with either LCMV or MCMV in non-immune mice, but LCMV infection and MCM infection of influenza A virus-immune mice each had its own unique features. Thus, the specific sequence of virus infections controls the outcome of disease.
45

How Does ATP Regulate Erythrocyte Glucose Transport?: a Dissertation

Leitch, Jeffry M. 05 June 2007 (has links)
Human erythrocyte glucose sugar transport displays a complexity that is not explained by available models. Sugar transport was examined in resealed red cell ghosts under equilibrium exchange conditions (intracellular [sugar] = extracellular [sugar]). Exchange 3-O-methylglucose (3MG) import and export are monophasic in the absence of cytoplasmic ATP but are biphasic when ATP is present. Biphasic exchange is observed as the rapid filling of a large compartment (66% cell volume) followed by the slow filling of the remaining cytoplasmic space. Two models for biphasic sugar transport are presented in which 3MG must overcome a sugar-specific, physical (diffusional) or chemical (anomerization) barrier to equilibrate with cell water. The anomerization model was rejected through several lines of direct experimental investigation. 1) The sizes of the fast and slow phases of sugar transport do not correlate with the equilibrium anomer distributions of all GLUT1 sugar substrates. 2) Increasing the rate of anomerization by addition of exogenous intracellular mutarotase has no effect on biphasic transport kinetics. 3) Direct measurement of initial rates of sugar uptake or exchange demonstrates that GLUT1 shows no anomer preference. The physical barrier model was further refined by the use of the counterflow condition (intracellular [sugar] >> extracellular [sugar]). The presence of a physical barrier alone was unable to explain the complex counterflow time courses observed. As a result, the model was modified to include the action of a specific sugar export that is compartmentalized from rapidly equilibrating, GLUT1-mediated uptake and exit.
46

CD4 T Cell-Mediated Lysis and Polyclonal Activation of B Cells During Lymphocytic Choriomeningitis Virus Infection: A Dissertation

Jellison, Evan Robert 10 January 2008 (has links)
CD4 T cells and B cells are cells associated with the adaptive immune system. The adaptive immune system is designed to mount a rapid antigen-specific response to pathogens by way of clonal expansions of T and B cells bearing discrete antigen-specific receptors. During viral infection, interactions between CD4 T cells and B cells occur in a dynamic process, where B cells that bind to the virus internalize and degrade virus particles. The B cells then present viral antigens to virus-specific CD4 T cells that activate the B cells and cause them to proliferate and differentiate into virus-specific antibody-secreting cells. Yet, non-specific hypergammaglobulinemia and the production of self-reactive antibodies occur during many viral infections, and studies have suggested that viral antigen-presenting B cells may become polyclonally activated by CD4 T cells in vivo in the absence of viral engagement of the B cell receptor. This presumed polyclonal B cell activation associated with virus infection is of great medical interest because it may be involved in the initiation of autoimmunity or contribute to the long-term maintenance of B cell memory. In order to directly examine the interactions that occur between T cells and B cells, I asked what would happen to a polyclonal population of B cells that are presenting viral antigens, if they were transferred into virus-infected hosts. I performed these studies in mice using the well-characterized lymphocytic choriomeningitis virus (LCMV) model of infection. I found that the transferred population of antigen-presenting B cells had two fates. Some antigen-expressing B cells were killed in vivo by CD4 T cells in the first day after transfer into LCMV-infected hosts. However, B cells that survived the cytotoxicity underwent a dynamic polyclonal activation manifested by proliferation, changes in phenotype, and antibody production. The specific elimination of antigen-presenting B cells following adoptive transfer into LCMV-infected hosts is the first evidence that MHC class II-restricted killing can occur in vivo during viral infection. This killing was specific, because only cells expressing specific viral peptides were eliminated, and they were only eliminated in LCMV-infected mice. In addition to peptide specificity, killing was restricted to MHC class II high cells that expressed the B cell markers B220 and CD19. Mice depleted of CD4 T cells prior to adoptive transfer did not eliminate virus-specific targets, suggesting that CD4 T cells are required for this killing. I found that CD4 T cell-dependent cytotoxicity cannot be solely explained by one mechanism, but Fas-FasL interactions and perforin are mechanisms used to induce lysis. Polyclonal B cell activation, hypothesized to be the cause of virus-induced hypergammaglobulinemia, has never been formally described in vivo. Based on previous studies of virus-induced hypergammaglobulinemia, which showed that CD4 T cells were required and that hypergammaglobulinemia was more likely to occur when virus grows to high titer in vivo, it was proposed that the B cells responsible for hypergammaglobulinemia may be expressing viral antigens to virus-specific CD4 T cells in vivo. CD4 T cells would then activate the B cells. However, because the antibodies produced during hypergammaglobulinemia are predominantly not virus-specific, nonvirus-specific B cells must be presenting viral antigens in vivo. In my studies, the adoptively transferred B cells that survived the MHC class II-restricted cytotoxicity became polyclonally activated in LCMV-infected mice. Most of the surviving naïve B cells presenting class II MHC peptides underwent an extensive differentiation process involving both proliferation and secretion of antibodies. Both events required CD4 cells and CD40/CD40L interactions to occur but B cell division did not require MyD88-dependent signaling, type I interferon signaling, or interferon γ signaling within B cells. No division or activation of B cells was detected at all in virus-infected hosts in the absence of cognate CD4 T cells and class II antigen. B cells taken from immunologically tolerant donor LCMV carrier mice with high LCMV antigen load became activated following adoptive transfer into LCMV-infected hosts, suggesting that B cells can present sufficient antigen for this process during a viral infection. A transgenic population of B cells presenting viral antigens was also stimulated to undergo polyclonal activation in LCMV-infected mice. Due to the high proportion of B cells stimulated by virus infection and the fact that transgenic B cells can be activated in this manner, I conclude that virus-induced polyclonal B cell activation is independent of B cell receptor specificity. This approach, therefore, formally demonstrates and quantifies a virus-induced polyclonal proliferation and differentiation of B cells which can occur in a B cell receptor-independent manner. By examining the fate of antigen-presenting B cells following adoptive transfer into LCMV-infected mice, I have been able to observe dynamic interactions between virus-specific CD4 T cells and B cells during viral infection. Adoptive transfer of antigen-presenting B cells results in CD4 T cell-mediated killing and polyclonal activation of B cells during LCMV infection. Studies showing requirements for CD4 T cells or MHC class II to control viral infections must now take MHC class II-restricted cytotoxicity into account. Polyclonal B cell activation after viral infection has the potential to enhance the maintenance of B cell memory or lead to the onset of autoimmune disease.
47

Dissecting the Role of Innate Pattern Recognition Receptors and Interferon Regulatory Factor-5 in the Immune Response to Human Metapneumovirus and other Pathogens: A Dissertation

Jiang, Zhaozhao 19 August 2010 (has links)
The Innate immune system is the first line of defense against invading microbial pathogens. It is a fast-acting and non-antigen-specific defense system, which employs germline encoded surveillance systems capable of responding to a broad-spectrum of pathogens. The innate immune system involves a variety of immune cells, which express different profiles of surveillance or detection receptors. Upon sensing pathogens, these receptors trigger cell signalling to turn on transcription of inflammatory cytokines, chemokines, anti-microbial peptides and type I Interferons. These effectors have direct effects on the control of pathogen load and also activate the adaptive immune system, which is ultimately required to clear infections. The type I interferons (IFNs) are the principal cytokines strongly induced during infection with viruses and are required for direct control of viral replication and modulation of cells of the adaptive immune response. The signalling pathways induced in order to activate type I IFNs are dependent on the interferon regulatory factors (IRFs). Striving for survival, microbes have evolved various strategies to subvert/impair these critical defense molecules. In this thesis work, I have used Human Metapneumoviruses (HMPVs), a relatively newly described family of paramyxoviruses as model viruses to explore the role of pattern recognition receptors (PRRs) and the IRF family of transcription factors in the innate immune response. These studies revealed that the recognition of HMPV viral pathogen-associated molecular patterns (PAMPs) by immune cells is different in different cell types. Retinoic acid-inducible gene-I (RIG-I), a cytosolic RNA helicases senses HMPV-A1 virus for triggering type I IFN activation by detecting its 5’- triphosphate viral RNA in most human cells, including cell lines and primary monocytes. An exception to these findings was plasmacytoid dendritic cells (PDCs), where Toll-like receptor (TLR)-7 is the primary sensor involved in detecting HMPV viruses. By comparing the innate immune response to two HMPV strains, we found that these two closely related strains had very different immune stimulatory capabilities. HMPV-1A strain triggered type I IFNs in monocytes, PDCs and cells of epithelial origin. In contrast, a related strain, HMPV-B1 failed to trigger IFN responses in most cell types. Our studies suggested that the phosphoprotein (P) of HMPV-B1 could prevent the viral RNA from being detected by RIG-I, thus inhibiting the induction of type I IFN production in most cell type examined. This finding adds to our understanding of the mechanisms by which viruses are sensed by surveillance receptors and also unveils new means of viral evasion of host immune responses. Although IRFs are extensively studied for their role in regulating type I IFN activation, especially in TLR and RIG-I like receptor (RLR) signalling pathways upon viral infection, a clear understanding of how this family of transcription factors contributes to anti-viral immunity was lacking. Studies conducted as part of this thesis revealed that in addition to IRF3 and IRF7, which play a central role in anti-viral immunity downstream of most PRRs (e.g. TLRs, RLRs, DNA sensors), the related factor IRF5 was also an important component of innate anti-viral defenses. Using IRF5-deficient mice we studied in detail the role of IRF5 in coordinating antiviral defenses by examining its involvement in signalling downstream of TLRs. These studies led us to examine the role of IRF5 in the regulation of type I IFNs as well as inflammatory cytokines in different cell types. While most TLRs that induced IFNβ showed normal responses in IRF5-deficient mice, CpG-B-induced IFNβ production in CD11c+CDCs isolated from mouse spleen but not those generated in vitro from bone marrow required IRF5. This was in contrast to responses with lipopolysaccharide (LPS) or polyriboinosinic polyribocytidylic acid (polyIC), ligands for TLR4 and 3, respectively. Moreover, we found that in contrast to IRF3 and/or IRF7, IRF5 was important in coordinating the expression of inflammatory cytokines such as TNFα downstream of some TLRs. In addition to our studies to examine the requirement for IRF5 in TLR signaling, we also showed that muramyl peptide (MDP) from Mycobacterium tuberculosis (Mtb) could activate type I IFNs via IRF5. This was the first evidence linking IRF5 to a non-TLR-driven pathway. IRF5 activation in this case was downstream of a novel nucleotide-binding oligomerization domain containing (NOD)-2/receptor-interacting serine-threonine kinase (RIP)-2 signaling pathway. Collectively, the studies outlined in this thesis have assisted in providing a framework to understand the role of TLRs, RLRs and IRFs in the immune response to paramyxoviruses and have unveiled new mechanisms of activation of the IRFs as well as new mechanisms by which pathogens subvert or evade these important innate defense mechanisms.
48

Cytotoxic T-Lymphocyte Responses During Acute Epstein-Barr Virus Infection

Beaulieu, Brian L. 13 May 1996 (has links)
Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus which causes acute infectious mononucleosis and is etiologically associated with malignant lymphoproliferative disorders including Burkitt's lymphoma, nasopharyngeal carcinoma, B-cell lymphomas in immunocompromised hosts, Hodgkin's disease, T cell lymphomas, and smooth muscle tumors in allograft recipients. The medical significance of EBV is underscored by its potent growth transforming effects on human B-lymphocytes in-vitro and the potentially oncogenic consequences of infection in-vivo. The majority of EBV-associated malignancies occur in the setting of chronic infection and strong virus-specific humoral immunity, suggesting that cellular immunity is primarily responsible for preventing the outgrowth of EBV-transformed B cells in-vivo. Similarly, primary EBV infection in adolescents and adults stimulates an intense cytotoxic-T-lymphocyte (CTL) response which coincides with a marked reduction in the number of infected B cells in the peripheral blood. Evidence of previous EBV infection can be confirmed by the presence of EBV-specific, HLA-restricted memory T cells in the peripheral blood which inhibit the outgrowth of newly EBV-transformed B cells and efficiently lyse established autologous B-lymphoblastoid cell lines. Worldwide, EBV is responsible for substantial morbidity, comparable to measles, mumps and hepatitis virus, for which vaccines exists. Accordingly, the potential public health impact of an EBV vaccine has reinforced our efforts to identify the immunodominant virus-encoded T-cell epitopes which stimulate naive CTL effectors during acute infection and maintain memory CTL surveillance during convalescence. The EBV-encoded antigens against which the memory CTL response is directed have been partially defined, and include most of the EBV latent proteins (EBNA-2, 3a, 3b, 3c, LP, and LMP-l, 2a, 2b) consistently expressed by in-vitro EBV-transformed B lymphocytes (type-III latency). Importantly, all EBV-associated malignancies express EBNA-1, and as yet no EBNA-1-specific memory CTL have been convincingly demonstrated. Additionally, many EBV-specific CTL lines and clones have been described which do not recognize any of the known latent proteins or other EBV protein antigens tested thus far. Thus while much is known about CTL-mediated immunity against EBV, our knowledge of EBV-derived CTL epitopes remains incomplete. In contrast to the EBV-specific memory CTL response, very little is known about the source of viral epitopes recognized during the primary CTL response to EBV. In this regard, acute infectious mononucleosis represents an ideal model system to study virus-specific, cell-mediated immunity. Acute IM is a self-limited illness characterized by the appearance of "atypical" lymphocytes (CD3+/CD8+/HLADR+), including both virus-specific and alloreactive CTL, which undoubtedly contribute to virus elimination and provide CTL precursors for life-long immunity to EBV. Like other herpesvirus, EBV can undergo either lytic or latent cycle replication. During primary EBV infection many lytic cycle genes are expressed which are likely responsible for stimulating the intense cellular immune response associated with acute infectious mononucleosis. During convalescence a minor population of circulating B cells remain latently infected, harbor multiple EBV episomes, and express only EBNA-1 and possibly LMP-2a (type-I latency). Thus, latency type-I infected B cells in-vivo express a much more restricted spectrum of latent proteins and are therefore not subject to elimination by the same virus-specific CTL as are type-III EBV latently infected cells. Accordingly, many mechanisms have been proposed to explain EBV persistence including; restricted expression of EBV latent genes, reduced levels of cellular adhesion molecules, downregulation of MHC class-I molecules, absence of EBNA-1 T-cell-epitopes, and most recently, EBNA-1-mediated inhibition of antigen processing. While these mechanisms may contribute to ineffective T cell surveillance against latency type-I EBV- infected cells, B cells expressing the full spectrum of latent proteins (type-III) also exist transiently in vivoand maintain detectable humoral and CTL responses to most latent proteins. Our first goal was to identify the virus-encoded immunodominant antigens recognized by in-vivoactivated MHC class-I restricted CTL isolated from college students experiencing primary EBV infection, manifested as acute IM. Following a prodromal period of several weeks, newly EBV infected patients present with signs and symptoms of acute IM, including elevated numbers of activated CD8+ T cells in their peripheral blood, many of which, like memory CTL, are EBV-specific and HLA-restricted. In order to address the issue of EBV persistence and the immune control of EBV-induced lymphoproliferation, we also studied the long-term EBV-specific memory CTL response in these same individuals. Blood from acute IM patients and healthy EBV seropositive donors served as a source of peripheral blood lymphocytes to generate bulk CTL cultures and autologous target cells. The infecting strain of EBV was determined for each patient by DNA-PCR amplification of virus from saliva. Lymphocytes were isolated from whole blood by Ficoll-Paque density centrifugation and T- and B-cell enriched populations were obtained by AET-sheep red cell rosette selection. Autologous B cell blasts served as a source of target cells and recombinant vaccinia virus constructs were used to introduce individual EBV latent genes into target cells. Expression of individual EBV genes in target cells was confirmed by both western blot and immunofluorescence. Primary CTL responses to EBV were evaluated in standard 5lCr release assays using freshly isolated, T-cell enriched PBL from acute IM patients as effector cells. EBV-specific memory CTL responses were evaluated with bulk CTL culture generated by in-vitro restimulation with autologous B-LCLs. FACS analyses were routinely performed on bulk cultures of effector CTL populations in order to more clearly characterize their phenotype. Lastly, monoclonal antibody blocking studies and cold target competition assays were performed in order to accurately identify the viral antigen and MHC components responsible for target cell recognition. Our results based upon evaluation of 35 acute IM patients and 32 convalescent patients demonstrate that the virus-specific primary CTL response is broadly directed against the full spectrum of latent proteins, including EBNA1 and the viral coat glycoprotein gp350, while the memoryCTL response, which essentially lacks EBNA1 reactivity, is directed primarily against the EBNA 3 family of proteins (3A, 3B, 3C). Importantly, the immunodominant response by both primary and memory CTL was directed against the EBNA3 proteins. CTL from 7 of the 35 acute IM patients evaluated recognized EBNA1 expressing targets, and in 4 of these 7 patients, EBNA1 was an immunodominant antigen. Similarly, CTL from 7 of 35 acute IM patients recognized gp350 transfected targets, while no gp350-specific memory CTL responses were observed. While the phenotype of in-vivo primed CTL effectors were CD8+/HLA-DR+/CD11b+, the major subpopulation of memory CTL were CD8+/HLA-DR+/CD11b-. The CD11b "memory marker" reached peaked levels on the first sample day for all patients and gradually declined to baseline levels over a period of several months. In contrast, the CD11b marker was quickly shed from in vitropropogated CTL, over a period of 5-10 days. Target cell lysis by in-vivoactivated CTL was almost completely blocked by antibody directed againt [against] class-I molecules (BBM.1), whereas the effect of blocking target cell lysis by anti-CD8 mAb varied between 40-75%. These findings are consistent with an absolute need for class-I restricted antigen presentation, and imply that CD8 was variably required, likely for the lower affinity TCR/ Ag combinations. Cell lysis mediated by in-vitro-restimulated memory CTL was also largely inhibited by anti-class-I mAb, while anti-CD8 mAb was only mild/moderately effective in blocking target cell lysis, in keeping with the concept that memory CTL bear higher avidity TCR which can recognize antigen independent of CD8. Our detection of only one EBNA1-specific memory CTL response among the 32 patients tested supports the theory that latently infected B cells in-vivo, expressing only EBNA1, escape CTL recogition and thus might serve as a reservoir for viral persistence and/or reactivation. The rare ability to detect an EBNA1-specific memory CTL responses remains a relatively unexplained phenomenon and may involve a number of tolerizing mechanisms including the induction of anergy by presentation of EBNA-1 in the absence of costimulation, clonal deletion of low affinity T cells, the absence of dominant T cell epitopes within EBNA1 or a result of the recently described inhibiting properties of EBNA-1 on antigen processing and presentation. Alternatively, the absence of detectable EBNA1-specific memory CTL may be the result of insufficient or inappropriate restimulation of memory CTL in vitro. We addressed this possibility by attempting to selectively restimulate and expand EBNA1-specific CTL from acute IM patients by using EBNA1 expressing B cells blasts as a stimulus. Effector cells generated in this manner killed target cells in an MHC class-I restricted manner but were specific for an unspecified vaccinia antigen. Interestingly, the phenotype of the effector cells was predominantly CD3+/CD4-/CD8-/γδ T cells. In summary, our findings suggest that a multitude of previously unrecognized, EBV-specific CTL are present in the peripheral blood during acute IM, and include EBNA-1-specific CTL. The importance of accurately defining the in-vivo immune response to EBV is underscored by the ever-growing list of EBV associated malignancies. In addition to providing insights into the oncogenesis and potential treatment of NPC, a newly described link between precursor lesions and EBV infection raises the possibility that heightened immunity to EBV or EBV-infected cells may prevent the development of NPC. An obvious expectation would include extension of such knowledge to other EBV associated malignancies such as B and T cell lymphomas, Hodgkin's lymphomas, and smooth muscle tumors. First however, existing gaps in knowledge regarding the immune response to EBV and EBV-associated malignancies must be closed. Details about the viral gene products which are involved in stimulating a broadly protective, virus-specific immune response in a large number of individuals is fundamental to the design of an effective EBV vaccine. Since the presence of activated CD8+ T cells correlates with the rapid decline of EBV infected B cells in the peripheral blood, a concise description of the EBV-specific CTL response in the setting of acute infection will be necessary for the rational design of an effective acute IM vaccine. Increased understanding of viral escape mechanisms is also likely to contribute to therapeutic modalities to treat autoimmune disorders.
49

Virus-Lymphocyte Interactions: Virus Expression Is Differentially Modulated by B Cell Activation Signals: A Dissertation

Schmidt, Madelyn R. 01 January 1991 (has links)
It is shown here that the ability of B lymphocytes to act as supportive host cells for virus infections requires they be activated from the resting Gostage of the cell cycle. I have used a series of activation regimens, which allow B cells to progress to different stages in their activation/differentiation pathway toward antibody secretion, in order to evaluate the extent of activation required to support vesicular stomatitis or Newcastle disease virus infections. At least three distinct phases during B cell activation which affected VSV infection were defined. Freshly isolated resting murine splenic B cells in the Go phase of the cell cycle do not support VSV, assessed by protein synthesis, infectious center formation, and PFU production. Small B cells cultured for 48 hours without stimulation still do not support VSV. B cells stimulated with the lymphokines found in Con A activated supernatants from splenic T cells or cloned T cell lines transited into the G1 phase of the cell cycle but remain refractory to VSV. These VSV non-supportive B cell populations do take up virus particles and transcribe viral mRNAs which can be translated in vitro, suggesting a translational block to VSV. B cells stimulated into the S phase of the cell cycle with anti-immunoglobulin synthesize VSV proteins and increased numbers of infectious centers, but only low level PFU synthesis (center) is observed. Co-stimulation with anti-Ig and lymphokines, which supports differentiation to antibody secretion, enhanced PFU synthesis without further increasing the number of infected B cells. LPS, which activates B cells directly to antibody secretion by a pathway different from anti-Ig, induced infectious centers, and PFUs at levels comparable to those seen when stably transformed permissive cell lines are infected. Co-stimulation of LPS activated B cells with the same lymphokine populations that enhance PFU production when anti-Ig is used as a stimulator suppresses PFU production completely, suggesting that anti-Ig and LPS activated B cells are differentially responsive to lymphokines. NDV infection of murine B cells differed markedly from VSV infection, as all B cell populations examined gave a similar response pattern. NDV viral proteins were synthesized by B cells in each of the activation states previously described, even freshly isolated B cells. Infectious center formation increased up to 5-fold over the levels observed with unstimulated B cells after anti-Ig or LPS activation. However, PFU synthesis was low (center) for all B cell populations. These results suggest that these two similar viruses may be dependent on different host cell factors and that these factors are induced for VSV but not NDV by the B cell activators employed here or that the process of infection of B cell by these two viruses induces different cellular responses.
50

The CTL Memory Responses to Influenza A Viruses in Humans: a Dissertation

Jameson, Julie Marie 01 November 1999 (has links)
Influenza A virus infections are a major cause of morbidity and mortality in the United States and throughout the world. The current vaccine elicits primarily a humoral response that is specific for the external glycoproteins hemagglutinin (HA) and neuraminidase (NA). However, these are the viral proteins that are most susceptible to antigenic shift and drift, and can evade the humoral response. Cytotoxic T lymphocytes (CTL) recognize and lyse virus-infected cells and are important in clearing influenza A virus infections. CTL can recognize epitopes on both the external glycoproteins and the more conserved internal viral proteins. This thesis investigates the hypothesis that there is a broad CTL memory response in humans, and, if boosted by vaccines, these CTL may help clear influenza A virus strains of different subtypes. The CTL repertoire specific for influenza A viruses reported in inbred mice is extremely limited and has focused on a few immunodominant epitopes. We perfonned preliminary bulk culture chromium release assays using human peripheral blood mononuclear cells (PBMC) stimulated with influenza virus strain A/PR/8/34 (H1N1) in vitro. CTL activity was observed against autologous B-lymphoblastoid cell lines (B-LCL) infected with vaccinia constructs that expressed several influenza A viral proteins, including nucleoprotein (NP), matrix (M1), nonstructural 1 (NS1) and polymerase (PB1). This was more diverse than the limited response reported in inbred mice. To further characterize the CTL repertoire in humans, PBMC from healthy adult donors were stimulated and CTL were cloned by limiting dilution. Isolated cell lines were further characterized by their CD4/CD8 surface expression, histocompatibility leukocyte antigen (HLA) restriction, cross-reactive or subtype-specific influenza A subtype recognition, and epitope recognition. CTL lines isolated from three donors recognized epitopes on many different influenza virus proteins. The ELISPOT assay was used to identify the number of IFN-γ- secreting cells and determine the precursor frequency of the CTL specific for the epitopes that were mapped. The precursor frequency of IFN-γ producing CTL ranged from 1 in 4,156 PBMC to 1 in 31,250 PBMC. The precursor frequency for one epitope was below the level of detection of this assay, but most of the memory CTL were readily detected. The cross-reactive or subtype-specific recognition of various human influenza A subtypes by these T cell lines was determined by chromium release assays. Most of the CTL lines recognized B-LCL infected with any of the three influenza A subtypes that have caused epidemics in the last century (H1N1, H2N2, and H3N2) and recognized epitopes on conserved internal influenza viral proteins. Most of the subtype-specific cell lines recognized the surface HA or NA glycoproteins, which are not well conserved between influenza subtypes. Although most of the T cell lines that were characterized were cross-reactive with influenza viruses of human origin, infection of humans with a divergent swine or avian derived strain could cause a global pandemic. To study the human CTL responses to non-human influenza viruses, B-LCL were infected with an Hsw1N1 influenza A virus of swine origin, and cell lines were tested for recognition of these targets in a chromium release assay. Most cell lines lysed the targets infected With the Hsw1N1 subtype to the same degree as targets infected with the human H1N1 strain. Two influenza viruses of duck origin were also tested and were recognized by many of the cell lines. The subtypes of these duck strains were Hav1N1 and H5N2. The isolates of influenza A virus from the Hong Kong outbreak of 1997 were also used to infect targets and analyze recognition by these CTL. We found that approximately 50% of the human T cell lines tested recognized both of the Hong Kong isolates, 25% recognized at least one isolate, and 25% recognized neither isolate to the same degree as the A/PR/8/34 (H1N1) virus. We analyzed the amino acid (aa) changes in the epitopes of the T cells lines from the 25% of cell lines that did not recognize either Hong Kong virus isolate. Non-conservative mutations were found in all of the epitopes that lost recognition by the human CTL lines. Bulk cultures of PBMC from three donors that were stimulated with A/PR/8/34 (H1N1) influenza A virus of human origin recognized all of the non-human virus strains tested. Thus, humans have memory CTL that recognize influenza viruses of avian and swine species. This may provide a second line of defense against influenza infection in case of exposure to a novel influenza A virus derived from these species. These results made it clear that humans have broad CTL memory to influenza A virus. In order to determine whether these T cells could be boosted in a vaccine, immune-stimulatory complexes (Iscom) incorporating inactivated influenza particles were tested in vitro. Iscoms containing inactivated influenza A vaccine (Flu-Iscom) were used to pulse autologous B-LCL overnight that were then used as targets in chromium release assays with human CTL lines as effectors. A CD8+ HA-specific CTL line lysed these targets, but not targets pulsed with Iscoms alone or with inactivated influenza A vaccine alone. An NS1-specific cell line recognized targets pulsed with NS1 protein and Iscoms, but not targets pulsed with Iscoms or NS1 protein alone. Therefore, CTL could recognize in vitrotarget cells that were exposed to the Iscom vaccines containing their specific epitope. Flu-Iscom and Iscom mixed with inactivated influenza virus particles (Flu-Iscomatrix) were then used as vaccines in a clinical trial to test CTL and neutralizing antibody induction against influenza. Fifty-five donors were bled pre-vaccination, and on days 14 and day 56 post-vaccination. Bulk culture chromium release assays were performed using targets infected with live vaccine strain viruses. There were significantly more increases in the influenza A specific CTL activity in the PBMC of donors that were vaccinated with the Flu-Iscom and Flu-Iscomatrix vaccines than in recipients of the standard vaccine. In order to determine whether these increases in cytotoxicity were due to an increase in the precursor frequency of influenza specific CTL, the PBMC were used in ELISPOT assays to assess the changes pre-and post-vaccination. When there was an increase in the level of cytotoxicity detected in bulk culture CTL, there was often also an increase in the precursor frequency of influenza-specific CTL. Peptide-specific increases in the number of CTL that recognize epitopes such as M1 aa 58-66 were detected in several donors confirming the increase in influenza-specific CTL post-vaccination. Another type of T cell that may be involved in defense against viruses is the γδ T cell. T cells expressing the γδ T cell receptor (TCR) have been found extensively in mucosal tissues in mice and humans. Influenza A viruses enter via the airway tract, infecting the epithelial cells at the mucosal surface. These epithelial cells have been shown in vitro to be targets for influenza-specific cytolytic recognition of αβ T cells. To analyze whether γδ T cells can respond to influenza A-infected APCs, PBMC were stimulated with influenza A virus. Intracellular IFN-γ staining was used to determine whether γ/δ T cells can secrete IFN-γ in response to the influenza A virus infection. We observed an increase in the percentage of γ/δ T cells secreting IFN-γ post-influenza A virus infection of PBMC compared to uninfected or allantoic fluid-stimulated cultures. These T cells also upregulated CD25 and CD69 in response to live influenza A virus. We focused on the responses in the CD8- population of γδ T cells, which are the majority of γδ T lymphocytes. Furthermore, the increases in IFN-γ production and activation marker expression were much more clear in the CD8- γδ+ T cells. The level of CD8- γδ T cell activation with inactivated influenza A virus was much less, and in some cases no higher than uninfected PBMC. The CD8+ αβ and γδ responses could be partially blocked by anti-class I antibodies, but the CD8- γδ responses could not. Vaccinia virus infection did not activate the CD8- γδ T cells to the same degree as influenza virus infection. γδ T cells are thought to have a regulatory role that includes the secretion of cytokines and epithelial growth factors to help restore tissue back to health. Humans have broad multi-specific T lymphocyte responses by αβ T cells to influenza A viruses and those responses are cross-reactive with human, avian, and swine virus strains. These CTL can be activated in vitro and boosted in number in vivo by Iscom incorporating vaccines. There is also a population of γδ+ T lymphocytes in humans that responds to influenza virus infection by producing cytokines and becoming activated. Increasing memory CTL as a second line of defense against influenza A viruses may be important in future vaccine development.

Page generated in 0.0612 seconds