• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Integration of xylan extraction from E. grandis, prior to pulping, into Kraft mills

Joubert, Andre Jacobus 03 1900 (has links)
Thesis (MEng)--Stellenbosch University, 2015. / ENGLISH ABSTRACT: Pulp and paper mills are being placed under increasing pressure to maximise the use of the biomass being processed for pulp, and move towards integrated biorefineries (IFBRs), where a diverse range of products can be produced and not just pulp exclusively. Extracting hemicelluloses prior to the pulping process could increase the profitability of the mills as the hemicelluloses could be used to produce a number of additional products. Hemicelluloses are a plant polysaccharides with the most abundant hemicellulose in hardwoods being xylan, with xylose being the primary monosaccharide constituent of xylan. The majority of pulps produced in the Southern Hemisphere are done with hardwoods as feedstock, typically with the Kraft process. The attraction of the concept of extracting hemicellulose prior to pulping is further augmented by the fact that hemicellulose is underutilised in the Kraft process. In the Kraft process the hemicellulose is dissolved during pulping and burned along with lignin for the production of energy, however, hemicellulose has about half the heating value when compared to that of lignin. The main objective of this study was to find a pre-extraction method that is effective in releasing xylan from Eucalyptus grandis, the most important hardwood feedstock used for pulping in the Southern Hemisphere. The method also needs to be practical in terms of integrating it into the Kraft process and should have a minimal effect on pulp yield and subsequent paper qualities. Xylan extractions from E. grandis as feedstock were carried out with white liquor, green liquor and NaOH. Green liquor is the dissolved smelt originating from the recovery boiler in the Kraft process and consists mainly sodium carbonate and sodium sulphide. White liquor’s principal components include sodium hydroxide and sodium sulphide and is used in the digesters during the pulping stage of the Kraft process. NaOH is a make up chemical used in the Kraft process. These chemicals were chosen since they are all already present within the Kraft process. The suitability of these chemicals as xylan extraction methods is further bolstered by the fact that their alkalinity may actually reduce chemical usage in pulping. This provides scope for integration of hemicellulose extraction into Kraft pulping without implementing major changes to the existing industrial process. Moreover, alkali chemicals for pre-extraction allow for minimal effect on resulting pulp and paper. In terms of the extracted product, the alkaline conditions provided by these chemicals create conditions that are suitable for a high degree of polymerisation of hemicelluloses. Xylan pre-extracted chips from selected extraction conditions were subjected to varying pulping conditions, to replicate pulp yields and properties obtained with untreated E. grandis chips when using conventional pulping. Handsheets were also produced from the pulps produced under the highest pulp yield conditions, and these were tested for pulp quality properties. Furthermore, mass balances were performed to gauge the impact that hemicellulose pre-extraction would have using green liquor, white liquor and NaOH on the sodium and sulphur balances of the mill. From the extractions performed, the highest fraction of xylan recovered was 15.15% w/w utilising 2M NaOH, at 120°C for 90 minutes extraction time. This was followed by white liquor extraction at 13.27% w/w utilising 20% AA at 140°C for 90 minutes. Green liquor extraction produced the lowest xylan recovery at 7.83% w/w with 2% TTA and 160°C with an h-factor of 800. The residues from selected extraction conditions were utilised for these pulping optimisation experiments. Selected extraction conditions used for further pulping included 2% TTA and 160°C for green liquor, 20% AA and 120°C and 140°C extraction temperature for white liquor, as well as 2M concentration and 120°C for NaOH. The highest yielding pulping conditions were achieved with a 35% reduction in pulping chemicals and 45 minutes pulping time in combination with green liquor pre-extraction, while for pulping combined with white liquor pre-extraction a 50% reduction in chemicals and 30 minute pulping time was preferred. For pulping subsequent to NaOH pre-extraction a 75% reduction in the NaOH dosage and a 45 minute pulp time was preferred. All pulp steps were performed at 170°C. Unbeaten handsheets produced from the selected pulping conditions for white liquor and green liquor extracted chips showed similar physical properties (burst, tear, tensile indices) when compared to the control (pulps from non-extracted chips). However the greater quantity of xylan removed from cellulose fibres with NaOH extraction, resulted in pulps with lower xylan contents, which affected the burst and tear indices of the handsheets formed from these pulps. An increase in tear, while a reduction in the burst index, was observed for the pulp produced from NaOH extracted chips. It was concluded that although white liquor and NaOH extraction allows for greater xylan recovery, the large chemical expenditure associated with these methods will impose significant cost impacts on the existing Kraft process. From mass balances performed, green liquor xylan extraction due to its lower alkalinity, will be more forgiving in terms of additional make up chemical costs. It also allowed for minimum effect on both the pulp and paper quality, thus making it the most practical of the pre-extraction methods. However, whether the additional make chemicals required for the green liquor extraction method will be justified by the quantity of xylan extracted will only be answered by a thorough economic assessment, which was not in the scope of this project. / AFRIKAANSE OPSOMMING: Pulp- en papiermeule word onder toenemende druk geplaas om die gebruik van die biomassa wat vir pulp verwerk word, te maksimaliseer, en om te beweeg na geïntegreerde bioraffinaderye, waar ʼn groot verskeidenheid produkte vervaardig kan word, en nie slegs uitsluitlik pulp nie. Die ekstraksie van hemisellulose voor die verpulpingsproses kan die winsgewendheid van die meule verhoog, aangesien die hemisellulose gebruik kan word vir die vervaardiging van verskeie bykomende produkte. Hemisellulose is ʼn plantpolisakkaried, met xilaan as die hemisellulose wat die oorvloedigste in hardehout gevind word, en met xilose as die primêre monosakkaried-bestanddeel van xilaan. Die meerderheid van die pulp wat in die Suidelike Halfrond geproduseer word, word met hardehout as voerstof gedoen, tipies met behulp van die Kraft-proses. Die aanloklikheid van die konsep om hemisellulose voor verpulping te win, word verder versterk deur die feit dat hemisellulose in die Kraft-proses onderbenut word. In die Kraft-proses word die hemisellulose tydens verpulping opgelos en saam met lignien verbrand vir die opwekking van energie, maar hemisellulose het egter ongeveer die helfte van die verhittingswaarde van dié van lignien. Die vernaamste doelstelling van hierdie studie was om ʼn pre-ekstraksiemetode te vind wat xilaan doeltreffend van Eucalyptus grandis, die belangrikste hardhout-voerstof wat in die Suidelike Halfrond vir verpulping gebruik word, kan vrystel. Die metode moet ook prakties wees met betrekking tot integrering met die Kraft-proses, en dit moet ʼn minimale uitwerking op pulpopbrengs en gevolglike papiergehalte hê. Xilaan-ekstraksie uit E. grandis as voerstof is uitgevoer met wit loog, groen loog en NaOH. Hierdie chemikalieë is gekies omdat hulle reeds in die Kraft-proses teenwoordig is. Die geskiktheid van hierdie chemikalieë as xilaan-ekstraksiemetodes is verder ondersteun deur die feit dat hul alkaliniteit moontlik chemiese verbruik in verpulping kan verlaag, wat ruimte vir die integrasie van hemisellulose-ekstraksie in Kraft-verpulping laat sonder om grootskaalse veranderinge aan bestaande nywerheidsprosesse te implementeer. Alkali-chemikalieë vir preekstraksie lei boonop tot ʼn minimale uitwerking op resultante pulp en papier, terwyl die alkalitoestande, met betrekking tot die geëkstraheerde produk, toestande skep wat geskik is vir ʼn hoë mate van polimerisasie van hemisellulose. Uit die ekstraksies wat uitgevoer is, is die hoogste fraksie xilaan gewin deur die gebruik van NaOH teen 15.15% w/w met 2M NaOH, teen 120 °C vir 90 minute ekstraksietyd. Dit is gevolg deur witloog-ekstraksie teen 13.27% w/w met die gebruik van 20% AA teen 140 °C vir 90 minute. Groenloog-ekstraksie het die laagste xilaan-winning teen 7.83% w/w met 2% TTA en 160°C met ʼn h-faktor van 800 voortgebring. Houtspaanders wat aan xilaan-pre-ekstraksie met groen loog onderwerp is, het pulp met kappanommers en opbrengste soortgelyk aan dié van nie-geëkstraheerde spaanders voortgebring toe die chemiese lading met 35% verlaag is, in verhouding tot dít wat vir niegeëkstraheerde spaanders gebruik is. Xilaan-pre-geëkstraheerde spaanders met wit loog het ʼn 50%-vermindering in verpulpingschemikalieë gelewer in verhouding tot houtspaanders wat aan konvensionele verpulping onderwerp is. Die chemiese reduksie van groen loog was minder as dié van wit loog weens die laer alkalilading wat tydens hemisellulose-ekstraksie voor verpulping gebruik is. Vir witloog-ekstraksie kon pulpopbrengste gehandhaaf word, alhoewel pregeëkstraheerde spaanders met wit loog ʼn neiging getoon het om pulp met laer kappanommers voort te bring. Alhoewel pulp wat uit houtspaanders gemaak is wat aan NaOH-ekstraksie onderwerp is, gelei het tot ʼn 75%-vermindering van NaOH gebruik in verhouding tot dié van konvensionele verpulping, is verwag dat geen NaOH benodig sou word nie, aangesien die houtspaanders reeds tydens xilaan-ekstraksie aan 2M NaOH blootgestel is. Voorts, in die literatuur is verpulping uitgevoer ná 2M NaOH-ekstraksie sonder dat die toevoeging van NaOH tydens verpulping nodig was [61]. Handvelle is vervaardig uit die pulp wat in die hoogste pulpopbrengs-toestande vervaardig is, en dit is vir pulpgehalte-eienskappe getoets. Die verpulpingstoestande met die hoogste opbrengs is bereik met ʼn 35%-vermindering van verpulpingschemikalieë en 45 minute verpulpingstyd in kombinasie met groenloog-pre-ekstraksie, terwyl vir verpulping met witloogpre- ekstraksie ʼn 50%-vermindering van chemikalieë en 30 minute verpulpingstyd verkies is. Vir verpulping ná NaOH-pre-ekstraksie is ʼn 75%-vermindering van die NaOH-dosis en 45 minute verpulpingstyd verkies. Alle verpulpingstappe is teen 170°C uitgevoer. Ongeklopte handvelle vervaardig uit die gekose verpulpingstoestande vir witloog- en groenloog- geëkstraheerde spaanders het soortgelyke fisiese eienskappe getoon (bars-, skeuren trek-indeks) in vergelyking met die kontrole (pulp uit nie-geëkstraheerde spaanders). Die grootste hoeveelheid xilaan is egter uit sellulose vesel met NaOH-ekstraksie verkry, wat gelei het tot pulp met laer xilaaninhoud, wat die bars- en skeur-indeks van die handvelle wat uit hierdie pulp vervaardig is, beïnvloed het. ʼn Toename in die skeur-indeks, met ʼn afname in die bars-indeks, is waargeneem vir die pulp wat uit NaOH-geëkstraheerde spaanders vervaardig is. Die gevolgtrekking is gemaak dat alhoewel witloog- en NaOH-ekstraksie groter xilaanwinning moontlik maak, die groot chemiese uitgawe geassosieer met hierdie metode ʼn aanmerklike koste-impak vir die bestaande Kraft-proses inhou. Groenloog-xilaanekstraksie sal, weens die laer alkaliniteit, meer geskik wees met betrekking tot die koste van bykomende aanvullende chemikalieë. Dit hou ook ʼn kleiner uitwerking op die pulp- en papiergehalte in, wat dit dus die praktieste van die pre-ekstraksiemetodes maak. Of die bykomende chemikalieë nodig vir die witloog- en NaOH-ekstraksies egter geregverdig kan word deur die hoeveelheid xilaan wat gewin is, kan slegs deur ʼn deeglike ekonomiese assessering beantwoord word, wat nie binne die omvang van hierdie projek geval het nie.

Page generated in 0.093 seconds