• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Hemispheric Interactions and Event-Related Potentials in Lateralized Stroop and Stroop Analog Tasks

Kavcic, Voyko 12 1900 (has links)
Classical Stroop stimuli and newly developed face/word Stroop analog stimuli were used to investigate hemispheric interactions in Stroop interference effects (SEs) and corresponding event-related potentials (ERPs). Lateralized stimuli were presented unilaterally and bilaterally as congruent or incongruent color strip-word or face-word pairs (to invoke right hemisphere (RH) and left hemisphere (LH) specialization, respectively, in the latter case). The common finding for such tasks is that responses for the congruent condition are faster and more accurate than for the incongruent condition (i.e., the SE). A primary prediction is that the SE will be maximized when both the distractor and target components, or distractor alone, are presented to the specialized hemisphere (i.e., LH for words and RH for faces). A total of 88 right-handed University of North Texas students participated in one of four experiments. Participants manually responded to one component of the stimuli (i.e., color, face, or word), while ignoring the other. Behaviorally, participants showed a robust SE across all experiments, especially for the face/word task with word targets. Findings from the face/word Stroop analog tasks also indicated that SEs were produced by selective attention to either faces or words, implicating a role for top-down (controlled) processes. Hemispheric asymmetries were observed only for bilateral presentations of the face/word Stroop analog stimuli and did not differ for word versus face targets. The results suggest that the LH is less susceptible to interference from the RH than vice versa. Electrophysiologically, anterior N1 and P1, posterior P1 and N1, N2, and P3 components were identified. A SE was found for P3 amplitudes, but not latencies, across all four experiments such that the congruent condition generated greater amplitudes than the incongruent condition, suggesting that the P3 is an index of task difficulty. Surprisingly, SEs were also observed for the early ERP components, albeit embedded in higher order interactions. Taken together, the ERP evidence suggests that there is no single locus of the SE, and instead, the SE appears to be distributed over several stages of information processing.
2

Hemispheric interaction: when and why is yours better than mine?

Cherbuin, Nicolas, n.cherbuin@anu.edu.au January 2006 (has links)
The performance of most tasks requires some interaction between the cerebral hemispheres. Despite this fact, research has focused on demonstrating that each hemisphere is specialised for certain processes and has largely neglected this interaction. ¶ Recent research has recognised the need for a better understanding of how resources are shared between the cerebral hemispheres. While these studies have shed light on factors external to the participants being tested, such as the type of task and stimuli used, presentation times, and different measurement methods, they have neglected variables that differ between individuals. The studies reported here focused on factors internal to the participants. They include sex, age, handedness, functional lateralisation, practice, attention, and hemispheric activation, which vary between individuals or within individuals across time, and have been shown to influence the structure and morphology of the corpus callosum which is the main pathway for hemispheric interactions. ¶ This thesis examines the relationship of these variables to the efficiency of hemispheric interactions. ¶ A literature review of the factors affecting hemispheric interactions and interhemispheric transfer is presented in Chapter 1, and methodological issues relating to the measurement of these variables in Chapter 2. Based upon this research, two tasks, the Poffenberger paradigm and a letter-matching task, were selected to assess interhemispheric transfer time and hemispheric interactions, respectively, and to investigate the relationship between these two variables. ¶ Chapters 3 and 4 present the findings of the principal study, using a large sample of participants and regression analysis, which demonstrate that both faster interhemispheric transfer and more extreme left-handedness are associated with greater efficiency of hemispheric interaction. Surprisingly, other factors which were expected to influence hemispheric interactions (age, sex, functional lateralisation, and attention) did not have a significant effect on this variable. ¶ A strong practice effect found in the task used in Chapters 3 and 4 is analysed in Chapter 5. Contrary to previous findings, this practice effect seems not to be due to a shift from sequential, rule-based processing to memory-retrieval, but rather, is a more general practice effect consistent with progressively more efficient use of neural resources. ¶ Chapter 6 shows that individuals with dyslexia not only demonstrate an abnormally fast interhemispheric transfer, but also attentional deficits, due probably to decreased efficiency in hemispheric interactions. Because some clinical populations, such as individuals with dyslexia, have been shown to have hemispheric interaction deficits, the study of such clinical samples can provide valuable information about the relationship between hemispheric interactions and other individual variables. ¶ In Chapter 7 it is demonstrated that both latent and induced patterns of lateralised hemispheric activation affect hemispheric interactions. This suggests that assessment of hemispheric activation is important not only in this field, but probably also more generally in neuropsychological research. These findings highlight the need for a simple, inexpensive measure of hemispheric activation that can be applied routinely in cognitive experiments. ¶ Chapter 8 presents a new technique to measure lateralised brain activation in typical psychological experiments using functional tympanic membrane thermometry (fTMT). This measure relies on the measurement of ear membrane temperature as an index of hemispheric activation. The technique is simple and inexpensive, and is shown to be suitable for the assessment of hemispheric activation patterns during typical experiments. ¶ In conclusion, individual characteristics such as the efficiency of interhemispheric transfer, handedness, functional lateralisation, attention, and hemispheric activation are important factors to consider when researching hemispheric interactions in both normal and clinical populations. Furthermore, future research will benefit from this newly developed measure, fTMT, by allowing the systematic study of the effects of hemispheric activation in brain processes.

Page generated in 0.1743 seconds