• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Development of self-registration features for the assembly of a microchannel hemodialyser

Porter, Spencer D. 17 September 2013 (has links)
More than 1.2 million people worldwide require regular hemodialysis therapy to treat end stage renal failure. In the United States alone, there are 300,000 patients and the National Kidney Foundation predicts that this number will double in the next 10 years. Currently most dialysis patients receive treatment at a dialysis center and need three 4-5 hour treatments each week. While these treatments are useful, more frequent and longer duration dialysis better simulates natural kidney function. Consequently, at-home hemodialysis is expected to provide patients a better quality of life. Current hemodialysis systems are too expensive to support at-home hemodialysis. Cost drivers include the capital costs of the hemodialysis equipment and the raw material costs of expensive hemodialysis membranes. Microchannel hemodialysers have smaller form factors requiring significantly less membrane while enabling reductions in the size and cost of capital equipment. Microchannel devices are typically made by microchannel lamination methods involving the patterning, registration and bonding of thin laminae. Findings in this paper show that membrane utilization is highly dependent on registration accuracy with membrane utilization often dropping below 25%. Efforts here focus on the development of a self-registration method for assembling microchannel hemodialysers capable of supporting registration accuracies below 25 ��m over a 50 mm polycarbonate lamina. Using these methods, registration accuracies below 13 ��m were measured over a 50 mm scale. A mass transfer test article was produced with measured average one dimensional misregistration below 19 ��m with a demonstrated membrane utilization of 44.9% when considering both microchannel and header regions. Mass transfer results suggest that the device performed with a mass transfer area of 90.59 mm��. A design is proposed describing membrane utilization of over 79%. / Graduation date: 2013 / Access restricted to the OSU Community at author's request from 9-17-2012 - 9-17-2013

Page generated in 0.1615 seconds