• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 110
  • 46
  • 4
  • 3
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 134
  • 134
  • 134
  • 62
  • 57
  • 48
  • 45
  • 45
  • 36
  • 36
  • 29
  • 28
  • 24
  • 20
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

The effect of a herbal formulation on human resting metabolic rate and body composition in overweight and obese individuals

Withers, Katherine 16 October 2012 (has links)
M.Tech. (Homoeopathy) / It is estimated that more than 29% of South African men and 56% of women are overweight or obese (Goedecke et al., 2005). Obesity can be classified as a chronic disease, with a number of detrimental health consequences, including the risk of developing insulin resistance, dyslipidaemia and hypertension (Beers et al., 2006). Conventional treatments for weight loss exist, but their use may be associated with unwanted side effects (Beers et al., 1999). While herbal medications are considered safer by many people, in general, studies of herbal medicinal products have been too few, of limited duration and small sample size (Mattsson and Nilsson, 2002). This indicates that further research into herbal weight loss treatments, with minimal or no side-effects, is required. The aim of this study is to determine the effect of a herbal formulation consisting of caffeine, Camellia sinensis, Coffea canephora bean, Coleus forskholii, Evodiamine, Ilex paraguariensis and Phaseolus vulgaris on human resting metabolic rate and body composition in overweight and obese individuals. The study was a double-blind, placebo-controlled study and formed part of a larger study where the research sample was shared by two additional researchers. A sample group of sixty healthy male and female participants between the ages of 18 and 45 years, with a body mass index of more than 25kg/m² and less than 35 kg/m², was recruited from the University of Johannesburg Doornfontein Campus Homoeopathic Health Clinic. Participants were randomly allocated into either an experimental or placebo group, in matched pairs according to gender and BMI. Both groups underwent an assessment of body composition and resting metabolic rate at the initial consultation, as well as at the two week, six week, and final twelve week follow-up consultations. Participant checklists recorded data documenting changes in general lifestyle factors for the duration of the study (Appendix E). The experimental group took two capsules of the herbal formulation daily and the control group took two capsules of the placebo, five days a week with a two day rest, for a period of twelve weeks. Data was collected and statistically analyzed using the Shapiro Wilk test, the Mann-Whitney test, the Friedman test, and the Wilcoxon signed ranks test (Smith, 2011).
32

Acousto-ultrasonics for defect assessment of composite materials

Dugmore, Kevin M. January 2002 (has links)
A thesis submitted in compliance with the requirements for the Masters Degree in Technology: Mechanical Engineering at Technikon Natal, 2002. / The experiments and their results contained herein will form the basis for the development of a portable non-destructive testing device for composite structures. This device is to be capable of detecting any of a variety of defects and assessing their severity within a short time / M
33

Anti-diabetic and phytochemical analysis of sutherlandia frutescens extracts

Adefuye, Ogheneochuko Janet January 2016 (has links)
In Africa, the importance of medicinal plants in folklore medicine and their contribution to primary healthcare is well recognized. Across the continent, local herbal mixtures still provide the only therapeutic option for about 80% of the population. The vast floral diversity and the intrinsic ethnobotanical knowledge has been the backbone of localized traditional herbal medical practices. In Africa, an estimated 5400 of the 60000 described plant taxa possess over 16300 therapeutic uses. Similarly, with a therapeutic flora comprising of approximately 650 species, herbal medical practitioners in South Africa, make use of a plethora of plants to treat different human diseases and infections. Over the years, studies have identified numerous plant species with potential against chronic metabolic diseases including type 2 diabetes mellitus (T2DM). Globally, the incidence and prevalence of T2DM have reached epidemic proportions affecting people of all ages, nationalities and ethnicity. Considered the fourth leading cause of deaths by disease, T2DM is a global health crisis with an estimated diagnosis and mortality frequency of 1 every 5 seconds and 1 every 7 seconds respectively. Though the exact pathophysiology of T2DM is not entirely understood, initial peripheral insulin resistance in adipose tissue, liver, and skeletal muscle with subsequent pancreatic β-cell dysfunction resulting from an attempt to compensate for insulin resistance is a common feature of the disease. The current approach to treating T2DM is the use of oral antidiabetic agents (OAAs), insulin, and incretin-based drugs in an attempt to achieve glycaemic control and maintain glucose homeostasis. However, conventional anti-T2DM drugs have been shown to have limited efficacies and serious adverse effects. Hence, the need for newer, more efficacious and safer anti-T2DM agents. Sutherlandia frutescens subsp. microphylla is a flowering shrub of the pea family (Fabaceae/Leguminaceae) found mainly in the Western Cape and Karoo regions of Southern Africa. Concoctions of various parts of the plant are used in the management of different ailments including T2DM. However, despite extensive biological and pharmacological studies, few analyses exist of the chemical constituents of S. frutescens and no Triple Time of Flight Liquid Chromatography with Mass Spectrometry (Triple TOF LC/MS/MS) analysis has been performed. The initial aim of this study was to investigate the phytochemical profile of hot aqueous, cold aqueous, 80% ethanolic, 100% ethanolic, 80% methanolic and 100% methanolic extracts of a single source S. frutescens plant material using colorimetric and spectrophotometric analysis. The hot aqueous extractant was found to be the best extractant for S. frutescens, yielding 1.99 g of crude extract from 16 g fresh powdered plant material. This data suggests that application of heat and water as the extractant (hot aqueous) could play a vital role in extraction of bioactive compounds from S. frutescens and also justifies the traditional use of a tea infusion of S. frutescens. Colorimetric analysis revealed the presence of flavonoids, flavonols, tannins, and phenols in all extracts with varying intensity. The organic extracts 100% methanol, 80% and 100% ethanol exhibited high color intensity (+++) for flavonoids and flavonols respectively, while all the extracts exhibited a moderate color intensity (++) for tannins and phenols. Spectrophotometric analysis of S. frutescens extracts revealed that all the organic extracts contained a significantly higher concentration (in mg/g of extract) of flavonols and tannins when compared to the aqueous extracts. All extracts contained approximately equal levels of phenols. These data confirm the presence of all four groups of bioactive phytocompounds in the S. frutescens extracts used in this study, and also confirm that different solvent extractants possess the capability to differentially extract specific groups of phytocompounds. in individual extracts. Further comparison of these compounds with online databases of anti-diabetic phytocompounds led to the preliminary identification of 10 possible anti-diabetic compounds; α-Pinene, Limonene, Sabinene, Carvone, Myricetin, Rutin, Stigmasterol, Emodin, Sarpagine and Hypoglycin B in crude and solid phase extraction (SPE) fractions of S. frutesecens. Furthermore, using two hepatic cell lines (Chang and HepG2) as an in-vtro model system, the anti-T2DM properties of crude aqueous and organic extracts of S. frutescents was investigated and compared. Both aqueous and organic extracts of S. frutescens were found to decrease gluconeogenesis, increase glucose uptake and decrease lipid accumulation (Triacylglycerol, Diacylglycerol, and Monoacylglycerol) in Chang and HepG2 hepatic cell cultures made insulin resistant (IR) following exposure to high concentration of insulin and fructose. Using real-time quantitative reverse transcriptase polymerase chain reaction (qRT-PCR), the aqueous and organic extracts of S. frutescens were confirmed to regulate the expression of Vesicle-associated membrane protein 3 (VAMP3), Mitogen-activated protein kinase 8 (MAPK8), and Insulin receptor substrate 1 (IRS1) in insulin resistant hepatic cells. IR-mediated downregulation of VAMP3, MAPK8, and IRS1 mRNA in IR HepG2 hepatic cell cultures was reversed in the presence of aqueous and organic extracts of S. frutescens. The hot aqueous extract displayed the highest activity in all the assays, while all the organic extracts displayed similar potency. In conclusion, this study reports that aqueous and organic extracts of S. frutescens possess numerous anti-diabetic compounds that can be further investigated for the development of new, more efficacious and less toxic anti-diabetic agents. The presence of multiple compounds in a single extract does suggest a synergistic or combinatorial therapeutic effect. These findings support the burgeoning body of in-vivo and in-vitro literature evidence on the anti-diabetic properties of S. frutescens and its use in folklore medicine.
34

Evaluating the effect of South African Herbal extracts on breast cancer cells

Choene, Mpho Susan 01 February 2013 (has links)
In this research we aimed to investigate the anti-proliferative properties of three South African plants: Kedrostis foetidissima, Euphorbia mauritanica and Elytropappus rhinocerotis against breast cancer cells. This was done on the basis of their documented ethno-medicinal use against cancer and other ailments. The plant extracts were screened for cytotoxicity and pro-apoptotic activity against two breast cancer cell lines MCF-7 and YMB-1. With an IC50 ~ 100 μg/ml, K. foetidissima was the only extract that exhibited significant cytotoxicity on both cell lines, whilst E. mauritanica was cytotoxic to MCF-7 cells only. The cytotoxicity assay was followed by the Annexin-V detection assay to evaluate the occurrence of apoptosis. The results observed suggested that K. foetidissima was inducing significant apoptosis on both YMB-1 and MCF-7 cells, whilst E. mauritanica was inducing significant apoptosis on MCF-7 cells. Since both K. foetidissima and E. mauritanica crude extracts induced apoptosis to MCF-7 cells, they were selected for gene expression studies on MCF-7 using real-time PCR. This was done with the aim of investigating if these extracts were having an effect on the tumour suppressors p53 and RBBP6, which were shown in previous studies to be deregulated in up to 50% of cancers. From the real-time PCR data we observed no changes in the expression levels of these genes following treatment with the herbal extracts. This may suggest that these plants have an effect on other components of the apoptotic pathway other than the tumour suppressors p53 and RBBP6. The antiproliferative activity observed whilst treating these particular cell lines with K. foetidissima and E. mauritanica suggests that these South African herbal plants present themselves as potential future cancer therapeutic agents; however, further studies on these herbal plants need to be performed to validate these results. KEYWORDS: Apoptosis Breast cancer Euphorbia mauritanica Kedrostis foetidissima p53
35

Antioxidant activity of Tibetan plant remedies used for cardiovascular disease

Owen, Patrick L. January 2000 (has links)
No description available.
36

Analytical and pharmacokinetic studies of the main chemical ingredients of rhizoma chuanxiong. / CUHK electronic theses & dissertations collection

January 2005 (has links)
and senkyunolide A were found as the three major compounds in all herbal samples investigated. In addition, great variations in both total and individual content of each of the ten main components investigated were observed in samples of different origins and those collected from a GAP developing base in the same or different years, suggesting the necessity of a thorough quality control for Rhizoma Chuanxiong. / Extraction of the main ingredients from Rhizoma Chuanxiong by supercritical fluid extraction using CO2 was investigated. An appropriate SCFE method for Chuanxiong was developed with the mild conditions for the extraction of the unstable components. The method provided a high recovery and adequate reproducibility, and may be suitable for large-scale industry extraction of Chuanxiong. / Firstly, a total of sixteen ingredients were identified from Chuanxiong by HPLC-UV-MS and HPLC-UV analyses. Among them, ten ingredients were determined to be the main components in Chuanxiong. A simple, sensitive and specific HPLC-UV method was developed, for the first time, to simultaneously qualitatively and quantitatively determine twelve ingredients, including the identified ten main ingredients, plus vanillin and tetramethylpyrazine (TMP), which although were not found in the present study, had also been reported to be present in Rhizoma Chuanxiong. The developed assay was fully validated and provided adequate accuracy and reproducibility for all compounds analyzed. It was applied successfully to simultaneously quantify all main constituents in different Chuanxiong samples. TMP and vanillin were not detected, while Z-ligustilide, coniferylferulate. / Furthermore, a comprehensive stability study was carried out for the first time with the three major components senkyunolide A, coniferylferulate, Z-ligustilide and the main ingredient 3-butylidenephthalide, in pure form or Chuanxiong extract obtained from supercritical fluid extraction using CO 2 (SCFE) under different conditions. Results showed that both sun light and elevated temperature led to degradations of these components to different extents. Owing to such thermal and light instability, post-harvest drying and processing procedures could significantly alter the chemical profile of Chuanxiong herb, and thus also need to be well controlled. / In conclusion, analytical and pharmacokinetic studies of the main chemical ingredients in Rhizoma Chuanxiong were systematically conducted. The results revealed, for the first time, that senkyunolide A, Z-ligustilide and 3-butylidenephthalide might be the primary chemical ingredients contributing to the beneficial effects of Chuanxiong. / Oral bioavailability was about 8%, 3% and 20% for senkyunolide A, Z-ligustilide and 3-butylidenephthalide, respectively. Instability in the gut mainly contributed to a low oral bioavailability of senkyunolide A. First-pass metabolism in the liver also contributed to the low oral bioavailability but to a much lower extent. For Z-ligustilide, extensive first-pass metabolism in the liver and degradation in the stomach only partly accounted for its poor oral bioavailability, while other gut factors involved are still unknown. In the case of 3-butylidenephthalide, its low oral bioavailability was attributed to extensive first-pass metabolism in both the gut and the liver. / Pharmacokinetic fates of the main ingredients in Chuanxiong SCFE extract were firstly evaluated in rats. After a single intravenous and oral administration, only senkyunolide A, Z-ligustilide and 3-butylidenephthalide were determined as the main herb related components in plasma. Coniferylferulate, although it is one of the abundant principles in the herb, was not detected in the plasma even immediately after dosing. / Pharmacokinetic profiles of senkyunolide A, Z-ligustilide and 3-butylidenephthalide were further elucidated individually in rats. All three compounds exhibited rapid absorption, extensive distribution, and rapid elimination. The pharmacokinetic profile of senkyunolide A followed a dose-independent pattern, whereas Z-ligustilide exhibited dose-dependent kinetics. 3-Butylidenephthalide underwent enterohepatic re-circulation. / Rhizoma Chuanxiong is derived from the dried rhizome of Ligusticum chuanxiong Hort. (Umbelliferae). In China, it has been widely prescribed for the treatment of cerebro- and cardio-vascular diseases for thousands of years. However, its chemical and pharmacological basis is poorly understood. In the present study, analytical methods for qualitative and quantitative determination of the main chemical components in Chuanxiong herb were developed. Furthermore, pharmacokinetic profiles of the main chemical ingredients in Chuanxiong were systematically investigated in rats for the first time. / The metabolic profiles of senkyunolide A, Z-ligustilide and 3-butylidenephthalide were investigated both in vivo and in vitro. Oxidation and hydration were found to be the main metabolic pathways for all three compounds. In addition, glutathione conjugation of senkyunolide A and Z-ligustilide also occurred in the rat. A novel metabolite 3-hydroxy-3-butylphthalide was identified as the major metabolite of 3-butylidenephthalide generated by a direct hydration, and was shown to have significantly higher plasma levels than those of the parent compound. Furthermore, the main metabolites detected in the plasma of rats administered with Chuanxiong extract were generated from senkyunolide A, Z-ligustilide and 3-butylidenephthalide. / Yan Ru. / "May 2005." / Adviser: Ge Lin. / Source: Dissertation Abstracts International, Volume: 68-03, Section: B, page: 1583. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (p. 244-255). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
37

Molecular authentication, intestinal absorption and in vitro metabolic studies of the major active ingredients of Rhizoma chuanxiong. / CUHK electronic theses & dissertations collection

January 2005 (has links)
Bi-directional transport studies in SimBioDASRTM and Caco-2 cells were employed to examine the transport profiles of Buph, Ligs and SenA. Apical to basolateral (A-B) transport studies of the tested compounds revealed high intestinal permeability and predicted human absorption of over 98%. Permeability ratio of B-A/A-B of Buph (0.7-1.3) and Ligs (0.8-1.2) indicated that they were transported by passive transcellular and paracellular pathways while the low B-A/A-B ratio of SenA may imply possible involvement of other transport mechanisms. One metabolite (M-1) generated from hydration of Buph was observed in Caco-2 cells and the fraction of metabolism was 12.5% (A-B). / In conclusion, Buph, Ligs and SenA were predicted to have good intestinal absorptions in human and rat. However, extensive hepatic and intestinal first-pass metabolism of Buph in rat and human were found to cause its low oral bioavailability. On the other hand, certain degree of hepatic first-pass metabolism of Ligs and SenA may account for the partial loss of drugs via oral administration to rat. Therefore, other routes of delivery, such as sublingual administration, are worth to be considered to improve the therapeutic effects of chuanxiong. / In the rat SPIP, permeability calculated from the appearance of Buph in mesenteric blood (Pblood) was 6.0+/-1.7 x 10-4 cm/s while the fraction of formation of M-1 was about 7.1%. Together with the in vitro results, it is proposed that first-pass metabolism of Buph was present in human and rat small intestine. Moreover, Ligs and SenA had high Pblood values of 4.2+/-1.2 x 10-3 cm/s and 3.8+/-2.8 x 10-3 cm/s, respectively, indicated that they were highly permeable across rat intestinal mucosa. No metabolism of Ligs was observed. But several metabolites of SenA were detected despite they were not quantified in the present study. / In vitro metabolic studies of Buph demonstrated that major metabolite M-1, which was also found in Caco-2 cells and SPIP, formed mainly in intestine and liver cytosol in rat and human. The intrinsic clearance (Vmax/Km) of Buph was extensive and similar in both organs, and its extent in human was comparable to that in rat. The sum of the estimated in vivo extraction ratio of Buph by liver (48.3%) and intestine (55.0%) was higher the loss via oral administration to rat (77%). On the other hand, several metabolites of Ligs and SenA were found in rat and human liver microsome but not in intestinal preparations. The estimated in vivo extraction ratio by liver of rat was 47.3% (Ligs) and 22.9% (SenA), respectively, which were less than the corresponding loss via oral administration to rat (Ligs: 92.2% and SenA: 97.7%), suggesting that first-pass effect other than metabolism of these two compounds in intestine also contributed to their low oral bioavailability. / Rhizoma chuanxiong is commonly prescribed orally for improving blood circulation and treating cardiovascular disorders in China. Like other traditional Chinese medicines, chuanxiong has been used for thousands of years in China but its chemical basis, pharmacological effects and pharmacokinetic fates of the active ingredients, especially absorption, are poorly understood. Recently, seventeen compounds such as 3-butylidenephthalide (Buph), Z-ligustilide (Ligs), senkyunolide A (SenA), vanillin (Vani), ferulic acid (Fera), senkyunolide I (SenI), senkyunolide H (SenH), coniferyl ferulate (ConFer), sedanolide (Sdan), riligustilide (Rili) and levistolide A (LevA) have been isolated and recognized as the main constituents of chuanxiong by our research team (Li et al., 2003). Moreover, it has been demonstrated that Buph, Ligs and SenA are bioactive components of chuanxiong for vasodilatation and anti-thromboembolism (Chan, 2005) though their oral bioavailability in rat are very low (2.3, 7.8 and 23% respectively) (Yan, 2005). Therefore, the present study aims at investigating the intestinal permeability of the major ingredients of chuanxiong and characterizing the intestinal absorption and first-pass metabolism of Buph, Ligs and SenA by in vitro Caco-2 cell monolayers, SimBioDASRTM , in situ single-pass intestinal perfusion (SPIP) in rat and in vitro metabolism using rat and human intestine and liver subcellular fractions respectively. / Using the in vitro cell monolayers of SimBioDAS RTM, the intestinal permeability of major components of chuanxiong ranged from 12.2+/-1.6 x 10-6 cm/s to 70.6+/-9.6 x 10-6 cm/s with a rank order of Fera < Buph < Ligs < Sdan < SenH < SenI < SenA < Vani. They were predicted to have over 70% absorption in human. However, ConFer, Rili and LevA were estimated to have poor human oral absorption. / Ko Nga Ling. / "September 2005." / Adviser: Ge Lin. / Source: Dissertation Abstracts International, Volume: 68-03, Section: B, page: 1577. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (p. 215-239). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
38

Investigation of pharmacological anti-diabetic effect on selected traditional Chinese herbs.

January 2005 (has links)
by Lam Fung Chun. / Thesis (M.Phil.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (leaves 187-202). / Abstracts in English and Chinese. / Abstract --- p.i / Abstract in Chinese --- p.iii / Acknowledgements --- p.v / Table of Contents --- p.vi / List of Abbreviations --- p.xiii / List of Tables --- p.xvii / List of Figures --- p.xviii / Publication --- p.xx / Chapter Chapter 1 --- Introduction --- p.1 / Chapter 1.1 --- Epidemiology of Diabetes Mellitus --- p.1 / Chapter 1.2 --- Definition of Diabetes Mellitus --- p.1 / Chapter 1.3 --- Glucose Homeostasis and Diabetes Mellitus --- p.2 / Chapter 1.4 --- Classification of Diabetes Mellitus --- p.6 / Chapter 1.4.1 --- Type 1 Diabetes Mellitus --- p.6 / Chapter 1.4.2 --- Type 2 Diabetes Mellitus --- p.7 / Chapter 1.4.3 --- Gestational Diabetes Mellitus --- p.8 / Chapter 1.4.4 --- Other specific types --- p.8 / Chapter 1.5 --- Diagnostic Criteria of Diabetes Mellitus --- p.9 / Chapter 1.6 --- Complications of Diabetes Mellitus --- p.11 / Chapter 1.7 --- Pharmacological Treatment of Diabetes --- p.12 / Chapter 1.7.1 --- Treatment for type 1 diabetes mellitus --- p.12 / Chapter 1.7.2 --- Treatment for Type 2 diabetes mellitus --- p.13 / Chapter 1.7.2.1 --- Sulfonylureas --- p.14 / Chapter 1.7.1.2 --- Meglitinides --- p.15 / Chapter 1.7.1.3 --- Biguanides --- p.15 / Chapter 1.7.1.4 --- Thazolidinediones --- p.16 / Chapter 1.7.1.5 --- α-Glucosidase inhibitor --- p.16 / Chapter 1.8 --- Diabetes and Traditional Chinese Medicine --- p.17 / Chapter 1.9 --- Objective of this project --- p.18 / Chapter Chapter 2 --- "Botanical, Preparation and Authentication of Traditional Chinese Herbs" --- p.22 / Chapter 2.1 --- Introduction --- p.22 / Chapter 2.2 --- Herbal Materials --- p.22 / Chapter 2.3 --- Authentication of Herbal Material --- p.30 / Chapter 2.4 --- Extraction Method --- p.32 / Chapter 2.4.1 --- Material and Methods --- p.32 / Chapter 2.4.2 --- Results --- p.32 / Chapter 2.4 --- Discussion --- p.32 / Chapter Chapter 3 --- In vitro Studies on Selected Traditional Chinese Herbs --- p.35 / Chapter 3.1. --- Introduction --- p.35 / Chapter 3.2 --- Hepatic Gluconeogenesis Studies --- p.36 / Chapter 3.2.1 --- Introduction --- p.36 / Chapter 3.2.2 --- Material and Methods --- p.41 / Chapter 3.2.2.1 --- Cell Culture of H4IIE --- p.41 / Chapter 3.2.2.2 --- Glucose Production Assay --- p.42 / Chapter 3.2.2.3 --- Bicinchoninic Acid (BCA) Protein Assay --- p.43 / Chapter 3.2.3 --- Results --- p.44 / Chapter 3.3 --- Intestinal Glucose Absorption Studies --- p.46 / Chapter 3.3.1 --- Introduction --- p.46 / Chapter 3.3.2 --- Material and Methods --- p.48 / Chapter 3.3.2.1 --- Preparation of BBMV --- p.48 / Chapter 3.3.2.1.1 --- Chemicals --- p.48 / Chapter 3.3.2.1.2 --- Method --- p.48 / Chapter 3.3.2.2 --- Preparation of Herbal Extracts --- p.50 / Chapter 3.3.2.3 --- BBMV Glucose Uptake Assay --- p.51 / Chapter 3.3.2.4 --- Bicinchoninic Acid (BCA) Protein Assay --- p.54 / Chapter 3.3.3 --- Results --- p.54 / Chapter 3.4 --- Fibroblast Glucose Uptake Studies --- p.57 / Chapter 3.4.1 --- Introduction --- p.57 / Chapter 3.4.2 --- Material and Methods --- p.58 / Chapter 3.4.2.1 --- Cell Culture of Hs68 --- p.58 / Chapter 3.4.2.2 --- 2-Deoxy-D-glucose Uptake Assay --- p.59 / Chapter 3.4.2.3 --- Bicinchoninic Acid (BCA) Protein Assay --- p.60 / Chapter 3.4.3 --- Results --- p.60 / Chapter 3.5 --- Adipocyte Glucose Uptake Studies --- p.63 / Chapter 3.5.1 --- Introduction --- p.63 / Chapter 3.5.2 --- Material and Methods --- p.65 / Chapter 3.5.2.1 --- Cell Culture of 3T3-L1 --- p.65 / Chapter 3.5.2.2 --- Differentiation of 3T3-L1 --- p.65 / Chapter 3.5.2.3 --- 2-Deoxy-D-glucose Uptake Assay --- p.66 / Chapter 3.5.2.4 --- Bicinchoninic Acid (BCA) Protein Assay --- p.68 / Chapter 3.5.3 --- Results --- p.69 / Chapter 3.6 --- Glucose Transporter Type 4 (GLUT4) Expression Studies --- p.71 / Chapter 3.6.1 --- Introduction --- p.71 / Chapter 3.6.2 --- Material and Methods --- p.48 / Chapter 3.6.2.1 --- Cell Culture of 3T3-L1 --- p.71 / Chapter 3.6.2.2 --- Differentiation of 3T3-L1 --- p.71 / Chapter 3.6.2.3 --- GLUT4 Expression Assay --- p.72 / Chapter 3.6.2.4 --- Preparation of RNA --- p.72 / Chapter 3.6.2.5 --- RT-PCR --- p.73 / Chapter 3.6.2.6 --- PCR Analysis on GLUT4 Expression --- p.74 / Chapter 3.6.2.7 --- Real-time PCR --- p.75 / Chapter 3.6.3 --- Results --- p.77 / Chapter 3.7 --- Discussion --- p.81 / Chapter 3.7.1 --- Discussion of Hepatic Gluconeogenesis Studies --- p.81 / Chapter 3.7.2 --- Discussion of Intestinal Glucose Absorption Studies --- p.82 / Chapter 3.7.3 --- Discussion of Fibroblast Glucose Uptake Studies --- p.83 / Chapter 3.7.4 --- Discussion of Adipocyte Glucose Uptake Studies --- p.84 / Chapter 3.7.5 --- Discussion of Glucose Transporter Type 4 (GLUT4) Expression Studies --- p.86 / Chapter 3.7.6 --- Conclusion --- p.87 / Chapter Chapter 4 --- Purification of Cortex Moutan --- p.90 / Chapter 4.1 --- Introduction --- p.90 / Chapter 4.1.1 --- Phytochemical Studies of Cortex Moutan --- p.90 / Chapter 4.2 --- Organic Extraction of Cortex Moutan --- p.93 / Chapter 4.2.1 --- Extraction Material and Methods --- p.93 / Chapter 4.2.2. --- Results --- p.93 / Chapter 4.3 --- BBMV Glucose Uptake Assay with Cortex Moutan Organic Extract (CM-C and CM-D) --- p.96 / Chapter 4.3.1 --- Material and Methods --- p.48 / Chapter 4.3.2 --- Results --- p.96 / Chapter 4.4 --- Fractionation of CM-C and CM-D --- p.98 / Chapter 4.4.1 --- Material and Methods --- p.98 / Chapter 4.4.1.1 --- Chemicals --- p.98 / Chapter 4.4.1.2 --- Methods --- p.98 / Chapter 4.4.2 --- Results --- p.100 / Chapter 4.5 --- BBMV Glucose Uptake Assay of CM-C and CM-D Sub-fractions --- p.105 / Chapter 4.5.1 --- Results --- p.105 / Chapter 4.6 --- Sulfonylation of CM-D1 --- p.107 / Chapter 4.6.1 --- Material and Methods --- p.107 / Chapter 4.6.1.1 --- Chemicals --- p.107 / Chapter 4.6.1.2 --- Methods --- p.107 / Chapter 4.6.2 --- Structure Elucidation of CM-D1s --- p.108 / Chapter 4.6.2.1 --- 1H-NMR Analysis --- p.108 / Chapter 4.6.3 --- BBMV Glucose Uptake Assay of CM-D1s --- p.108 / Chapter 4.6.4 --- Results --- p.108 / Chapter 4.7 --- "Structural Elucidation of CM-D3, CM-D4 and CM-D5" --- p.112 / Chapter 4.7.1 --- Material and Methods --- p.112 / Chapter 4.7.1.1 --- Mass Spectrometry --- p.112 / Chapter 4.7.1.2 --- 1H-NMR Analysis --- p.112 / Chapter 4.7.2 --- Results --- p.113 / Chapter 4.8 --- "BBMV Glucose Uptake Assay of Acetovallione, CM-D3,CM-D4 and CM-D5" --- p.116 / Chapter 4.8.1 --- Results --- p.116 / Chapter 4.9 --- Synthesis of CM-D3s --- p.118 / Chapter 4.9.1 --- Material and Methods --- p.118 / Chapter 4.9.1.1 --- Chemicals --- p.118 / Chapter 4.9.1.2 --- Methods --- p.118 / Chapter 4.9.2 --- Structure Elucidation of synthesized product --- p.119 / Chapter 4.9.3 --- Results --- p.119 / Chapter 4.10 --- Discussion --- p.121 / Chapter Chapter 5 --- In vivo Studies on Selected Herbs --- p.123 / Chapter 5.1 --- Introduction --- p.123 / Chapter 5.1.1 --- Diabetic Animal Models --- p.123 / Chapter 5.1.2 --- Neonatal Streptozotocin-induced Diabetic Rat Model --- p.125 / Chapter 5.2 --- Oral Glucose Tolerance Test (OGTT) --- p.126 / Chapter 5.2.1 --- Animal --- p.126 / Chapter 5.2.2 --- Rat Induction Material and Methods --- p.126 / Chapter 5.2.3 --- Testing Method for diabetic condition of rats --- p.127 / Chapter 5.3.4 --- Results --- p.128 / Chapter 5.3 --- Basal Glycaemia Test --- p.138 / Chapter 5.3.1 --- Animal --- p.138 / Chapter 5.3.2 --- Rat Induction Material and Methods --- p.138 / Chapter 5.3.3 --- Testing Method --- p.138 / Chapter 5.3.4 --- Results --- p.140 / Chapter 5.4 --- Discussion --- p.143 / Chapter Chapter 6 --- General Discussion --- p.147 / Chapter 6.1 --- Introduction --- p.147 / Chapter 6.2 --- Summary of Research Findings --- p.151 / Chapter 6.3 --- Result Interpretation --- p.152 / Chapter 6.3.1 --- Result Interpretation of In Vitro Studies --- p.152 / Chapter 6.3.2 --- Result Interpretation of Cortex Moutan Purification --- p.154 / Chapter 6.3.3 --- Result Interpretation of In Vivo Studies --- p.157 / Chapter 6.4 --- Limitations and Improvements --- p.161 / Chapter 6.5 --- Future Directions --- p.163 / Chapter 6.6 --- Conclusions --- p.169 / Appendices --- p.170 / References --- p.187
39

Cardiovascular effects of Rhizoma chuanxiong and its active constituents. / CUHK electronic theses & dissertations collection

January 2005 (has links)
In a mouse model of pulmonary thromboembolism induced by a collagen-adrenaline mixture, the SFE extract and ligustilide reduced the paralysis-death ratio, and the anti-thrombotic response of senkyunolide A was more pronounced. The effect of BDPH was not significant. Neither the SFE extract nor the three phthalides prolonged bleeding time in tail-transected mice. / In a rat myocardial ischemia-reperfusion model involving coronary artery ligation, 7-day pre-treatment with the SFE extract and ligustilide reduced ventricular arrhythmias in isolated hearts. BDPH and senkyunolide A were without significant effects. / In rat platelet-rich plasma, platelet aggregation induced by collagen and U46619 but not by adenosine diphosphate was inhibited by the SFE extract. Ligustilide inhibited the responses of all three agonists, while BDPH and senkyunolide A inhibited the collagen response only. / Raw Rhizoma Chuanxiong herb and its crude extract as obtained by supercritical fluid extraction (SFE) comprised mainly phthalides. The SFE extract and three representative phthalides, butylidenephthalide (BDPH), ligustilide and senkyunolide A, were studied on vasorelaxation, myocardial ischemia, platelet aggregation and thrombosis. The mechanisms underlying BDPH-mediated vasorelaxation were also explored. / Rhizoma Chuanxiong, the dried rhizome of Ligusticum chuanxiong Hort., is a common traditional Chinese medicine used for the treatment of cardiovascular diseases. Surprisingly, the scientific basis of its action is poorly understood. The current study aims to establish the pharmacological basis of the cardiovascular effects of Rhizoma Chuanxiong and its active constituents by examining their effects in several cardiovascular domains. / The current study demonstrated various cardiovascular actions of Rhizoma Chuanxiong, and thereby established the pharmacological basis of the effects of the herb. Phthalides, in particular BDPH, ligustilide and senkyunolide A, were important contributors to such actions. Future investigation of the SFE extract and/or individual phthalides related to the progression from in vitro and in vivo effectiveness to clinical efficacy is much anticipated. / The SFE extract, BDPH, ligustilide and senkyunolide A produced vasorelaxation on isolated preparations of rat aorta, rat saphenous vein and pig coronary artery. BDPH-mediated relaxation appeared to involve both extracellular Ca 2+-dependent (L-type voltage-operated, receptor-operated and store-operated Ca2+ channels) and independent (NO modulation, Ca2+ release from internal stores and Ca2+ desensitization) mechanisms. BDPH was also observed to augment relaxation induced by sodium nitroprusside and forskolin through mechanisms that remain undefined. / Chan Sun Kin Sunny. / "July 2005." / Advisers: G. Lin; R. L. Jones. / Source: Dissertation Abstracts International, Volume: 68-03, Section: B, page: 1575. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (p. 190-209). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.
40

Development and in-vitro evaluation of peroral and buccoadhesive formulations for biologically active crude oil extracted from Ligusticum chuanxiong, a traditional Chinese medicine. / CUHK electronic theses & dissertations collection

January 2005 (has links)
differential scanning calorimetric profile and the generation of much less intense and broader peaks in the powder X-ray diffraction pattern compared to beta-CD. FTIR analysis revealed significant physical interactions between CX oil and beta-CD in the granules, possibly due to complexation. Results from phase solubility measurements and proton nuclear magnetic resonance ( 1H-NMR) analysis of pure 3-butylidenephthalide (3-BDPH), a representative CX component, lend some support for the formation of a 1:1 stoichiometric inclusion complex between 3-BDPH and beta-CD. / Rhizoma chuanxiong (CX), the dried rhizome of Ligusticum Chuangxiong Hort. (Umbelliferae), has been extensively used in mainland China as a traditional herbal medicine for treating cardio-/cerebrovascular diseases and gynecological disorders. However, the active components in CX, which are predominantly essential oils, generally exhibit poor stability (mostly photo-oxidation), high volatility, low aqueous solubility, and extensive gut/hepatic metabolism, all of which can significantly reduce their oral bioavailability and therapeutic efficacy. The present project has investigated the feasibility of utilizing three formulation approaches to circumvent the aforementioned problems associated with the peroral delivery of CX (as crude oil mixture or individual components). / The first approach involved inclusion of CX oil in beta-cyclodextrin (beta-CD) as solid granules using a coprecipitation method optimized with the aid of an orthogonal study design. The resulting CX oil granules were colorless and odorless with a median particle size of 11.38mum; were stable to heat, light and moisture, and readily soluble in simulated gastric and intestinal fluids. The granules were largely amorphous, as evidenced by an absence of the melting endotherm for beta-CD in the formulation could be largely explicated by the complexation behavior and hydration properties of the two polymers blended in different weight percentages, as substantiated by turbidity measurement, viscosity determination and FTIR analysis of the pure polymer mixtures as well as swelling measurement of the formulated tablets. The sustained release behavior of 3-BDPH from the tablet was dependent on the relative proportion of the two polymers present, and could be similarly explained by the changes in hydration and complexation behavior of the polymers during the penetration of aqueous fluid into the tablet matrix. / The second approach involved incorporation of CX oil into surfactant micelles and liquid crystals as a self-emulsifying drug delivery system (SEDDS). An optimal formulation was developed through a judicial choice of excipients (lipids and surfactants/cosurfactant) and their proper combination in the correct proportions, as determined by the spontaneity of the emulsification process and the change in emulsion droplet size. The formulation was readily dispersible in water upon mild agitation, free from unpleasant odor, and stable in soft gelatin capsules for a storage period of at least 12 months under ambient condition. The optimal utilization of the lipid and surfactant blends in defined proportions in the formulation was further substantiated by interfacial tension determination and equilibrium phase analysis. / The third approach involved formulation of 3-BDPH (or crude CX oil) into a sustained-release buccoadhesive tablet, based on a systematic evaluation of the adhesive properties of two polymers (Carbopol 974P and hydroxypropyl methylcellulose K4M) used in the formulation. The adhesive properties of the formulation could be largely explicated by the complexation behavior and hydration properties of the two polymers blended in different weight percentages, as substantiated by turbidity measurement, viscosity determination and FTIR analysis of the pure polymer mixtures as well as swelling measurement of the formulated tablets. The sustained release behavior of 3-BDPH from the tablet was dependent on the relative proportion of the two polymers present, and could be similarly explained by the changes in hydration and complexation behavior of the polymers during the penetration of aqueous fluid into the tablet matrix. / Gao Yuan. / "April 2005." / Adviser: Albert H. L. Chow. / Source: Dissertation Abstracts International, Volume: 68-03, Section: B, page: 1585. / Thesis (Ph.D.)--Chinese University of Hong Kong, 2005. / Includes bibliographical references (p. 193-223). / Electronic reproduction. Hong Kong : Chinese University of Hong Kong, [2012] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Electronic reproduction. [Ann Arbor, MI] : ProQuest Information and Learning, [200-] System requirements: Adobe Acrobat Reader. Available via World Wide Web. / Abstracts in English and Chinese. / School code: 1307.

Page generated in 0.0946 seconds