• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Cross-Correlation Of Biomedical Images Using Two Dimensional Discrete Hermite Functions

Srinivasan, Nirmala 14 August 2012 (has links)
No description available.
2

Birkhoff Normal Form with Application to Gross Pitaevskii Equation

Yan, Zhenbin 10 1900 (has links)
<p>L^p is supposed to be L with a superscript lower case 'p.'</p> / <p>This thesis investigates a 1-dimensional Gross-Pitaevskii (GP) equation from the viewpoint of a system of Hamiltonian partial differential equations (PDEs). A theorem on Birkhoff normal forms is a particularly important goal of this study. The resulting system is a perturbed system of a completely resonant system, which we analyze, using several forms of perturbation theory.</p> <p>In chapter two, we study estimates 011 integrals of products of four Hermite functions, which represent coefficients of mode coupling, and play an important role in the proof of the Birkhoff normal form theorem. This is a basic problem, which has a close relationship with a problem of Besicovitch, namely the behavior of the L^p norms of L² -normalized Hermite functions.</p> <p>In chapter three we carefully reconsider the linear Schrodinger equation with a harmonic potential, and we introduce a family of Hilbert spaces for studying the GP equation, which generalize the traditional energy spaces in which one works. One unexpected fact is that these function spaces have a close relationship with the former works for the tempered distributions, in particular the N-representation theory due to B. Simon, and V. Bargmann's theory, which uncovers relationship between the tempered distributions and his function spaces through the so-called Segal-Bargmann transformation. In addition, our function spaces have a nice relationship with the Sobolev spaces. In this chapter, a few other questions regarding these function spaces are discussed.</p> <p>In chapter four the proof of the Birkhoff normal form theorem on spaces we have introduced are provided. The analysis is divided into two cases according to the regularity of the related function space. After proving the Birkhoff normal form theorem, we made an analysis of the impact of the perturbation on the main part of the GP system, which we remark is completel:y resonant.</p> / Doctor of Philosophy (PhD)
3

Riesz Transforms Associated With Heisenberg Groups And Grushin Operators

Sanjay, P K 07 1900 (has links) (PDF)
We characterise the higher order Riesz transforms on the Heisenberg group and also show that they satisfy dimension-free bounds under some assumptions on the multipliers. We also prove the boundedness of the higher order Riesz transforms associated to the Hermite operator. Using transference theorems, we deduce boundedness theorems for Riesz transforms on the reduced Heisenberg group and hence also for the Riesz transforms associated to special Hermite and Laguerre expansions. Next we study the Riesz transforms associated to the Grushin operator G = - Δ - |x|2@t2 on Rn+1. We prove that both the first order and higher order Riesz transforms are bounded on Lp(Rn+1): We also prove that norms of the first order Riesz transforms are independent of the dimension n.
4

A Mathematical Analysis of the Harmonic Oscillator in Quantum Mechanics

Solarz, Philip January 2021 (has links)
In this paper we derive the eigenfunctions to the Hamiltonian operator associated with the Harmonic Oscillator, and show that they are given by the Hermite functions. Then we prove that the Hermite functions form an orthonormal basis in the underlying Hilbert space. We also classify the inverse to the Hamiltonian operator as a Schatten-von Neumann operator. Finally, we derive the fundamental solution to the Schrödinger Equation corresponding to the Harmonic Oscillator using Mehler’s formula.

Page generated in 0.0628 seconds