• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 10
  • 6
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 51
  • 51
  • 46
  • 18
  • 17
  • 17
  • 14
  • 12
  • 11
  • 10
  • 10
  • 10
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Analysis of viral and cellular gene expression patterns in cells latently infected with EBV by suppression subtractive hybridization /

Kiss, Csaba, January 2003 (has links)
Diss. (sammanfattning) Stockholm : Karol. inst., 2003. / Härtill 5 uppsatser.
42

The Role of Heterologous Immunity in Mediating Natural Resistance to Infection in Human Subjects: A Dissertation

Watkin, Levi B. 13 March 2012 (has links)
Heterologous immunity is a mechanism by which immunological memory within an individual, developed in response to a previous infection, plays a role in the immune response to a subsequent unrelated infection. In murine studies, heterologous immunity facilitated by cross-reactive CD8 T-cell responses can mediate either beneficial (protective immunity) or detrimental effects (e.g. enhanced lung and adipose immunopathology and enhanced viral titers) (Selin et al., 1998; Chen et al., 2001; Welsh and Selin, 2002; Nie et al., 2010; Welsh et al., 2010). Protective heterologous immunity results in enhanced clearance of virus during a subsequent infection with an unrelated pathogen. Such is the case when mice are immunized with lymphocytic choriomeningitis virus (LCMV) and subsequently challenged with Pichinde virus (PV) or vaccinia virus (VACV) (Selin et al., 1998). However, heterologous immunity may also mediate enhanced immunopathology as mice immunized with influenza A virus (IAV) and challenged with LCMV show increased viral titers and enhanced lung immunopathology (Chen et al., 2003). The role heterologous immunity plays during infection is not limited to the murine system. In fact, there have now been several reports of enhanced immunopathology due to heterologous immunity during human infections, involving viruses such as IAV, Epstein-Barr Virus (EBV), hepatitis C virus (HCV), and dengue virus (DENV) (Mathew et al., 1998; Wedemeyer et al., 2001; Acierno et al., 2003; Nilges et al., 2003; Clute et al., 2005; Urbani et al., 2005). Interestingly, in all reported cases in humans, heterologous immunity mediated enhanced immunopathology. Upon infection with EBV the clinical presentation can range from asymptomatic to severe, occasionally fatal, acute infectious mononucleosis (AIM) (Crawford et al., 2006b; Luzuriaga and Sullivan, 2010) which is marked by a massive CD8 lymphocytosis. This lympho-proliferative effect in AIM was shown to be partially mediated by reactivation of cross-reactive IAV-M1 58-66 (IAV-GIL) specific CD8 memory T-cells in HLA-A2 patients reacting to the EBV-BMLF1 280 (EBV-GLC) epitope (Clute et al., 2005). Interestingly, EBV infects ~90% of individuals globally by the third decade of life, establishing a life-long infection (Henle et al., 1969). However, it is unknown why 5-10% of adults remain EBV-sero-negative (EBV-SN), despite the fact that the virus infects the vast majority of the population and is actively shed at high titers even during chronic infection (Hadinoto et al., 2009). Here, we show that EBV-SN HLA-A2+ adults possess cross-reactive IAV-GIL/EBV-GLC memory CD8 T-cells that show highly unique properties. These IAV-GIL cross-reactive memory CD8 T-cells preferentially expand and produce cytokines to EBV antigens at high functional avidity. Additionally, they are capable of lysing EBV-infected targets and show the potential to enter the mucosal epithelial tissue, where infection is thought to initiate, by CD103 expression. This protective capacity of these cross-reactive memory CD8 T-cells may be explained by a unique T-cell receptor (TCR) repertoire that differs by both organization and CDR3 usage from that in EBV-seropositive (EBV-SP) donors. The composition of the CD8 T-cell repertoire is a dynamic process that begins during the stochastic positive selection of the T-cell pool during development in the thymus. Thus, upon egress to the periphery a naïve T-cell pool, or repertoire, is formed that is variable even between genetically identical individuals. This T-cell repertoire is not static, as each new infection leaves its mark on the repertoire once again by stochastically selecting and expanding best-fit effectors and memory populations to battle each new infection while at the same time deleting older memory CD8 T-cells to make room for the new memory cells (Selin et al., 1999). These events induce an altered repertoire that is unique to each individual at each infection. It is this dynamic and variable organization of the T-cell repertoire that leads to private specificity even between genetically identical individuals upon infection with the same pathogens and thus a different fate (Kim et al., 2005; Cornberg et al., 2006a; Nie et al., 2010). It is this private specificity of the TCR repertoire that helps explain why individuals with the same epitope specific cross-reactive response, but composed of different cross-reactive T-cell clones, can either develop AIM or never become infected with EBV. Our results suggest that heterologous immunity may protect EBV-SN adults against the establishment of productive EBV infection, and potentially be the first demonstration of protective T-cell heterologous immunity between unrelated pathogens in humans. Our results also suggest that CD8 T-cell immunity can be sterilizing and that an individual’s TCR repertoire ultimately determines their fate during infection. To conclusively show that heterologous immunity is actively protecting EBV-SN adults from the establishment of a productive EBV infection, one would have to deliberately expose an individual to the virus. Clearly, this is not an acceptable risk, and it could endanger the health of an individual. A humanized mouse model could allow one to address this question. However, before we can even attempt to address the question of heterologous immunity mediating protection from EBV infection in humanized mice, we must first determine whether these mice can be infected with, and build an immune response to the two viruses we are studying, EBV and IAV. We show here that these mice can indeed be infected with and also mount an immune response to EBV. Additionally, these mice can also be infected with IAV. However, at this time the immune responses that are made to these viruses in our established humanized mouse model are not substantial enough to fully mimic a human immune response capable of testing our hypothesis of heterologous immunity mediating protection from EBV infection. Although the immune response in these mice to EBV and IAV infection is not suitable for the testing of our model the data are promising, as the humanized mouse model is constantly improving. Hopefully, with constant improvements being made there will be a model that will duplicate a human immune system in its entirety. This thesis will be divided into 5 major chapters. The first chapter will provide an introduction to both general T-cell biology and also to the role of heterologous immunity in viral infection. The second chapter will provide the details of the experimental procedures that were performed to test our hypothesis. The third chapter will describe the main scientific investigation of the role of heterologous immunity in providing natural resistance to infection in human subjects. This chapter will also consist of the data that will be compiled into a manuscript for publication in a peer-reviewed journal. The fourth chapter will consist of work performed pertaining to the establishment of a humanized mouse model of EBV and IAV infection. The establishment of this model is important for us to be able to show causation for protection from EBV infection mediated by heterologous immunity.
43

Linfoma de Burkitt: características clinicopatológicas, imunoistoquímicas e associação com o vírus de Epstein-Barr (EBV) em populações adulta e pediátrica em diferentes regiões geográficas no Brasil / Burkitt lymphoma: clinicopathologic, immunohistochemical and association with Epstein-Barr virus (EBV) in adult and pediatric population in different geographical regions of Brazil

Queiroga, Eduardo Moreira de 13 December 2008 (has links)
O linfoma de Burkitt (LB) é neoplasia linfóide de células B de alto grau que apresenta translocação constante envolvendo o proto-oncogene C-MYC. A associação com o vírus de Epstein-Barr (EBV) varia de acordo com a forma clinicopatológica. O presente estudo tem por objetivo analisar as características clinicopatológicas, imunoistoquímicas, incluindo a expressão do fator de transcrição MUM1/IRF4 e das proteínas p53 e p63, e investigar a associação com infecção pelo Herpesvírus humano 8 (HHV-8) e EBV, através de hibridização in situ e PCR, em 234 casos bem caracterizados de LB no Brasil, provenientes das 5 regiões geográficas em pacientes pediátricos e adultos, incluindo casos associados ao HIV. As características clínicas do LB no Brasil, de maneira geral, foram semelhantes às observadas na forma esporádica do LB ocorrendo nos países desenvolvidos. A infecção pelo EBV foi observada em 52,5% dos casos. A maior associação com EBV foi verificada nas regiões Norte e Nordeste e a menor na região Sul. Através de PCR, demonstrou-se predomínio de EBV do tipo A, sendo exceção a região Centro-Oeste. O fator de transcrição MUM1/IRF4 foi expresso em 39,2% dos tumores e apresentou correlação inversa com infecção pelo EBV. A expressão das proteínas p53 e p63 foi observada em 16,2% e 3,8% dos casos, respectivamente. Não se identificou infecção pelo HHV-8. O LB no Brasil apresenta características clinicopatológicas variáveis entre as regiões geográficas. A associação com infecção pelo EBV é intermediária entre a forma endêmica de LB e a forma esporádica ocorrendo em países desenvolvidos, sendo maior em regiões com indicadores sociais menos favoráveis. / Burkitt lymphoma (BL) is a high grade B cell lymphoma with a consistent translocation involving the proto-oncogene C-MYC. The association with the Epstein-Barr virus (EBV) varies depending on the clinicopathological form. This study aims to analyze the clinicopathologic, immunohistochemical features, including the expression of transcription factor MUM1/IRF4 and p53 and p63 proteins, and investigate the association with infection by human herpesvirus-8 (HHV-8) and EBV, by in situ hybridization and PCR, in 234 well-characterized cases of BL in Brazil from the 5 different geographic regions, in adult and pediatric patients, including HIV associated cases. The clinical characteristics of BL in Brazil, in general, were similar to those observed in the sporadic form of BL occurring in developed countries. EBV infection was seen in 52.5% of cases. The strongest association with EBV was found in the North and Northeast and the lowest in the South. PCR study demonstrated predominance of EBV type A, except in the Central-West region. The transcription factor MUM1/IRF4 was expressed in 39.2% of the tumors and showed inverse correlation with EBV infection. The expression of p53 and p63 proteins was observed in 16.2% and 3.8% of cases, respectively. No evidence of HHV-8 infection was found. The BL in Brazil is clinicopathologic diverse and regionally distinct. The association with EBV infection is intermediate between the endemic form of BL and sporadic form occurring in developed countries and is higher in regions with the less favorable social indicators
44

Linfoma de Burkitt: características clinicopatológicas, imunoistoquímicas e associação com o vírus de Epstein-Barr (EBV) em populações adulta e pediátrica em diferentes regiões geográficas no Brasil / Burkitt lymphoma: clinicopathologic, immunohistochemical and association with Epstein-Barr virus (EBV) in adult and pediatric population in different geographical regions of Brazil

Eduardo Moreira de Queiroga 13 December 2008 (has links)
O linfoma de Burkitt (LB) é neoplasia linfóide de células B de alto grau que apresenta translocação constante envolvendo o proto-oncogene C-MYC. A associação com o vírus de Epstein-Barr (EBV) varia de acordo com a forma clinicopatológica. O presente estudo tem por objetivo analisar as características clinicopatológicas, imunoistoquímicas, incluindo a expressão do fator de transcrição MUM1/IRF4 e das proteínas p53 e p63, e investigar a associação com infecção pelo Herpesvírus humano 8 (HHV-8) e EBV, através de hibridização in situ e PCR, em 234 casos bem caracterizados de LB no Brasil, provenientes das 5 regiões geográficas em pacientes pediátricos e adultos, incluindo casos associados ao HIV. As características clínicas do LB no Brasil, de maneira geral, foram semelhantes às observadas na forma esporádica do LB ocorrendo nos países desenvolvidos. A infecção pelo EBV foi observada em 52,5% dos casos. A maior associação com EBV foi verificada nas regiões Norte e Nordeste e a menor na região Sul. Através de PCR, demonstrou-se predomínio de EBV do tipo A, sendo exceção a região Centro-Oeste. O fator de transcrição MUM1/IRF4 foi expresso em 39,2% dos tumores e apresentou correlação inversa com infecção pelo EBV. A expressão das proteínas p53 e p63 foi observada em 16,2% e 3,8% dos casos, respectivamente. Não se identificou infecção pelo HHV-8. O LB no Brasil apresenta características clinicopatológicas variáveis entre as regiões geográficas. A associação com infecção pelo EBV é intermediária entre a forma endêmica de LB e a forma esporádica ocorrendo em países desenvolvidos, sendo maior em regiões com indicadores sociais menos favoráveis. / Burkitt lymphoma (BL) is a high grade B cell lymphoma with a consistent translocation involving the proto-oncogene C-MYC. The association with the Epstein-Barr virus (EBV) varies depending on the clinicopathological form. This study aims to analyze the clinicopathologic, immunohistochemical features, including the expression of transcription factor MUM1/IRF4 and p53 and p63 proteins, and investigate the association with infection by human herpesvirus-8 (HHV-8) and EBV, by in situ hybridization and PCR, in 234 well-characterized cases of BL in Brazil from the 5 different geographic regions, in adult and pediatric patients, including HIV associated cases. The clinical characteristics of BL in Brazil, in general, were similar to those observed in the sporadic form of BL occurring in developed countries. EBV infection was seen in 52.5% of cases. The strongest association with EBV was found in the North and Northeast and the lowest in the South. PCR study demonstrated predominance of EBV type A, except in the Central-West region. The transcription factor MUM1/IRF4 was expressed in 39.2% of the tumors and showed inverse correlation with EBV infection. The expression of p53 and p63 proteins was observed in 16.2% and 3.8% of cases, respectively. No evidence of HHV-8 infection was found. The BL in Brazil is clinicopathologic diverse and regionally distinct. The association with EBV infection is intermediate between the endemic form of BL and sporadic form occurring in developed countries and is higher in regions with the less favorable social indicators
45

Modulation of the deubiquitinating system in viral infection, lymphoid cell activation and malignant transformation /

Rolén, Ulrika, January 2007 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2007. / Härtill 3 uppsatser.
46

EBV gene variation and epigenetic alterations in Asian nasopharyngeal carcinoma and potential clinical applications /

Nguyen-Van, Do, January 2007 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2007. / Härtill 4 uppsatser.
47

Epstein-Barr virus latency in vivo and in vitro /

Zou, Jie Zhi, January 2006 (has links)
Diss. (sammanfattning) Stockholm : Karolinska institutet, 2006. / Härtill 5 uppsatser.
48

Cytotoxic T-Lymphocyte Responses During Acute Epstein-Barr Virus Infection

Beaulieu, Brian L. 13 May 1996 (has links)
Epstein-Barr virus (EBV) is a ubiquitous human herpesvirus which causes acute infectious mononucleosis and is etiologically associated with malignant lymphoproliferative disorders including Burkitt's lymphoma, nasopharyngeal carcinoma, B-cell lymphomas in immunocompromised hosts, Hodgkin's disease, T cell lymphomas, and smooth muscle tumors in allograft recipients. The medical significance of EBV is underscored by its potent growth transforming effects on human B-lymphocytes in-vitro and the potentially oncogenic consequences of infection in-vivo. The majority of EBV-associated malignancies occur in the setting of chronic infection and strong virus-specific humoral immunity, suggesting that cellular immunity is primarily responsible for preventing the outgrowth of EBV-transformed B cells in-vivo. Similarly, primary EBV infection in adolescents and adults stimulates an intense cytotoxic-T-lymphocyte (CTL) response which coincides with a marked reduction in the number of infected B cells in the peripheral blood. Evidence of previous EBV infection can be confirmed by the presence of EBV-specific, HLA-restricted memory T cells in the peripheral blood which inhibit the outgrowth of newly EBV-transformed B cells and efficiently lyse established autologous B-lymphoblastoid cell lines. Worldwide, EBV is responsible for substantial morbidity, comparable to measles, mumps and hepatitis virus, for which vaccines exists. Accordingly, the potential public health impact of an EBV vaccine has reinforced our efforts to identify the immunodominant virus-encoded T-cell epitopes which stimulate naive CTL effectors during acute infection and maintain memory CTL surveillance during convalescence. The EBV-encoded antigens against which the memory CTL response is directed have been partially defined, and include most of the EBV latent proteins (EBNA-2, 3a, 3b, 3c, LP, and LMP-l, 2a, 2b) consistently expressed by in-vitro EBV-transformed B lymphocytes (type-III latency). Importantly, all EBV-associated malignancies express EBNA-1, and as yet no EBNA-1-specific memory CTL have been convincingly demonstrated. Additionally, many EBV-specific CTL lines and clones have been described which do not recognize any of the known latent proteins or other EBV protein antigens tested thus far. Thus while much is known about CTL-mediated immunity against EBV, our knowledge of EBV-derived CTL epitopes remains incomplete. In contrast to the EBV-specific memory CTL response, very little is known about the source of viral epitopes recognized during the primary CTL response to EBV. In this regard, acute infectious mononucleosis represents an ideal model system to study virus-specific, cell-mediated immunity. Acute IM is a self-limited illness characterized by the appearance of "atypical" lymphocytes (CD3+/CD8+/HLADR+), including both virus-specific and alloreactive CTL, which undoubtedly contribute to virus elimination and provide CTL precursors for life-long immunity to EBV. Like other herpesvirus, EBV can undergo either lytic or latent cycle replication. During primary EBV infection many lytic cycle genes are expressed which are likely responsible for stimulating the intense cellular immune response associated with acute infectious mononucleosis. During convalescence a minor population of circulating B cells remain latently infected, harbor multiple EBV episomes, and express only EBNA-1 and possibly LMP-2a (type-I latency). Thus, latency type-I infected B cells in-vivo express a much more restricted spectrum of latent proteins and are therefore not subject to elimination by the same virus-specific CTL as are type-III EBV latently infected cells. Accordingly, many mechanisms have been proposed to explain EBV persistence including; restricted expression of EBV latent genes, reduced levels of cellular adhesion molecules, downregulation of MHC class-I molecules, absence of EBNA-1 T-cell-epitopes, and most recently, EBNA-1-mediated inhibition of antigen processing. While these mechanisms may contribute to ineffective T cell surveillance against latency type-I EBV- infected cells, B cells expressing the full spectrum of latent proteins (type-III) also exist transiently in vivoand maintain detectable humoral and CTL responses to most latent proteins. Our first goal was to identify the virus-encoded immunodominant antigens recognized by in-vivoactivated MHC class-I restricted CTL isolated from college students experiencing primary EBV infection, manifested as acute IM. Following a prodromal period of several weeks, newly EBV infected patients present with signs and symptoms of acute IM, including elevated numbers of activated CD8+ T cells in their peripheral blood, many of which, like memory CTL, are EBV-specific and HLA-restricted. In order to address the issue of EBV persistence and the immune control of EBV-induced lymphoproliferation, we also studied the long-term EBV-specific memory CTL response in these same individuals. Blood from acute IM patients and healthy EBV seropositive donors served as a source of peripheral blood lymphocytes to generate bulk CTL cultures and autologous target cells. The infecting strain of EBV was determined for each patient by DNA-PCR amplification of virus from saliva. Lymphocytes were isolated from whole blood by Ficoll-Paque density centrifugation and T- and B-cell enriched populations were obtained by AET-sheep red cell rosette selection. Autologous B cell blasts served as a source of target cells and recombinant vaccinia virus constructs were used to introduce individual EBV latent genes into target cells. Expression of individual EBV genes in target cells was confirmed by both western blot and immunofluorescence. Primary CTL responses to EBV were evaluated in standard 5lCr release assays using freshly isolated, T-cell enriched PBL from acute IM patients as effector cells. EBV-specific memory CTL responses were evaluated with bulk CTL culture generated by in-vitro restimulation with autologous B-LCLs. FACS analyses were routinely performed on bulk cultures of effector CTL populations in order to more clearly characterize their phenotype. Lastly, monoclonal antibody blocking studies and cold target competition assays were performed in order to accurately identify the viral antigen and MHC components responsible for target cell recognition. Our results based upon evaluation of 35 acute IM patients and 32 convalescent patients demonstrate that the virus-specific primary CTL response is broadly directed against the full spectrum of latent proteins, including EBNA1 and the viral coat glycoprotein gp350, while the memoryCTL response, which essentially lacks EBNA1 reactivity, is directed primarily against the EBNA 3 family of proteins (3A, 3B, 3C). Importantly, the immunodominant response by both primary and memory CTL was directed against the EBNA3 proteins. CTL from 7 of the 35 acute IM patients evaluated recognized EBNA1 expressing targets, and in 4 of these 7 patients, EBNA1 was an immunodominant antigen. Similarly, CTL from 7 of 35 acute IM patients recognized gp350 transfected targets, while no gp350-specific memory CTL responses were observed. While the phenotype of in-vivo primed CTL effectors were CD8+/HLA-DR+/CD11b+, the major subpopulation of memory CTL were CD8+/HLA-DR+/CD11b-. The CD11b "memory marker" reached peaked levels on the first sample day for all patients and gradually declined to baseline levels over a period of several months. In contrast, the CD11b marker was quickly shed from in vitropropogated CTL, over a period of 5-10 days. Target cell lysis by in-vivoactivated CTL was almost completely blocked by antibody directed againt [against] class-I molecules (BBM.1), whereas the effect of blocking target cell lysis by anti-CD8 mAb varied between 40-75%. These findings are consistent with an absolute need for class-I restricted antigen presentation, and imply that CD8 was variably required, likely for the lower affinity TCR/ Ag combinations. Cell lysis mediated by in-vitro-restimulated memory CTL was also largely inhibited by anti-class-I mAb, while anti-CD8 mAb was only mild/moderately effective in blocking target cell lysis, in keeping with the concept that memory CTL bear higher avidity TCR which can recognize antigen independent of CD8. Our detection of only one EBNA1-specific memory CTL response among the 32 patients tested supports the theory that latently infected B cells in-vivo, expressing only EBNA1, escape CTL recogition and thus might serve as a reservoir for viral persistence and/or reactivation. The rare ability to detect an EBNA1-specific memory CTL responses remains a relatively unexplained phenomenon and may involve a number of tolerizing mechanisms including the induction of anergy by presentation of EBNA-1 in the absence of costimulation, clonal deletion of low affinity T cells, the absence of dominant T cell epitopes within EBNA1 or a result of the recently described inhibiting properties of EBNA-1 on antigen processing and presentation. Alternatively, the absence of detectable EBNA1-specific memory CTL may be the result of insufficient or inappropriate restimulation of memory CTL in vitro. We addressed this possibility by attempting to selectively restimulate and expand EBNA1-specific CTL from acute IM patients by using EBNA1 expressing B cells blasts as a stimulus. Effector cells generated in this manner killed target cells in an MHC class-I restricted manner but were specific for an unspecified vaccinia antigen. Interestingly, the phenotype of the effector cells was predominantly CD3+/CD4-/CD8-/γδ T cells. In summary, our findings suggest that a multitude of previously unrecognized, EBV-specific CTL are present in the peripheral blood during acute IM, and include EBNA-1-specific CTL. The importance of accurately defining the in-vivo immune response to EBV is underscored by the ever-growing list of EBV associated malignancies. In addition to providing insights into the oncogenesis and potential treatment of NPC, a newly described link between precursor lesions and EBV infection raises the possibility that heightened immunity to EBV or EBV-infected cells may prevent the development of NPC. An obvious expectation would include extension of such knowledge to other EBV associated malignancies such as B and T cell lymphomas, Hodgkin's lymphomas, and smooth muscle tumors. First however, existing gaps in knowledge regarding the immune response to EBV and EBV-associated malignancies must be closed. Details about the viral gene products which are involved in stimulating a broadly protective, virus-specific immune response in a large number of individuals is fundamental to the design of an effective EBV vaccine. Since the presence of activated CD8+ T cells correlates with the rapid decline of EBV infected B cells in the peripheral blood, a concise description of the EBV-specific CTL response in the setting of acute infection will be necessary for the rational design of an effective acute IM vaccine. Increased understanding of viral escape mechanisms is also likely to contribute to therapeutic modalities to treat autoimmune disorders.
49

Respiratory pathogens in thoroughbred foals up to one year of age on a stud farm in South Africa

Picard, J.A. 27 February 2006 (has links)
The project was undertaken to monitor a group of 30 foals on a farm both clinically and microbiologically from birth until one year of age, to determine the aetiology of upper respiratory tract infections and to establish immune profiles of some of the known respiratory viral pathogens. One to two months prior to the birth of their foals, blood for serology was collected from the mares. The same specimens were collected from the foals just after birth, prior to suckling and a day after suckling. Thereafter the foals were examined monthly for the presence of respiratory disease and specimens taken. The following specimens were collected from each foal: three nasopharyngeal swabs, (one for virus isolation, one for bacteria and fungus isolation, and one for mycoplasma isolation) and blood that was allowed to clot. Blood was collected in heparin from sick foals with elevated rectal temperatures. Virus isolation was done on roller tube cultures of equine embryonic lung (EEL), Vero cells and rabbit kidney 13 (RK13) cells. The bacteria (including mycoplasmas) and fungi were cultured from the swabs and identified using a variety of traditional methods. The serum neutralization test (SNT) was used to detect antibodies to equid herpesvirus 1 (EHV-1), equid herpesvirus 4 (EHV-4), equine rhinovirus 1 (ERV-1), equine rhinovirus 2 (ERV-2) and equine adenovirus 1 (EAdV-1). The complement fixation test (CFT) was used to detect antibodies to EHV-1 and EHV-4 and the haemagglutination inhibition test (HIT) antibodies to equine influenzavirus (EIV). Only EHV-4 was cultured from the nasopharyngeal swabs of nine foals when they were 5 to 6 months of age and from one foal two months later. A wide variety of bacteria and fungi were cultured and it was established that coagulase-negative staphylococci, viridans streptococci, Moraxella spp. and Flavobacterium spp. predominated in most of the samples. Several potential bacterial pathogens were isolated but the most common were Streptococcus equi subsp. zooepidemicus, Actinobacillus equuland Staphylococcus aureus. Colostrum-derived antibodies were detected for all the viruses in all but two of the foals. It was found that the foals had similar or slightly higher titres than their mothers. The levels declined in direct proportion to what they initially were and were depleted by the time the foals were 2 to 7 months of age. Antibodies to natural infection was detected to EHV-4, ERV-2 and EAdV-1. A rise in antibody titres occurred when the foals were 5 to 6 months of age, two months later and when they were one year of age. Antibodies resulting from immunization was detected to EHV-1, EHV-4 and EIV. It was established that the most important virus causing upper respiratory tract disease of the foals from 5 to 12 months of age was EHV-1 with EAdV-1 playing a minor role. These viruses caused repeated bouts of infection with a two to five months interval. Streptococcus equi subsp. zooepidemicus was considered to be the most important secondary pathogen. Prior to this period most of the foals were healthy with only a few suffering from upper respiratory disease. The aetiology was not determined in these cases, but based on the bacteriology results, it was suspected that some of them were suffering from bacterial infections. / Dissertation (MSc (Veterinary Science))--University of Pretoria, 2005. / Veterinary Tropical Diseases / unrestricted
50

EBV-Specific CD4+ T Cell Responses in Acute Infectious Mononucleosis: a Dissertation

Precopio, Melissa Lynn 01 April 2004 (has links)
Epstein-Barr virus (EBV) is a ubiquitous herpesvirus that establishes a life-long latent infection of B cells. It is usually asymptomatic in healthy individuals; however, individuals with compromised immunity often develop EBV-induced lymphoma. EBV also encodes potential oncogenes that can contribute to tumorigenesis. Therefore, vaccine and immunotherapeutic strategies targeting EBV are desirable. Recent studies have shown that infusion of EBV-specific CD8+T cells can elicit remission of lymphomas arising after administration of immunosuppressive drugs during transplantation, suggesting an important role for T cells in the prevention of EBV-induced malignancy. A better understanding of the cellular immune components involved in the control of EBV will aid in the development of methods to prevent infection and/or treat EBV-associated disease. While EBV infection is usually acquired asymptomatically during childhood, primary infection of adolescents and young adults can result in an illness termed acute infectious mononucleosis (AIM). Because of the characteristic symptoms of the illness, individuals with AIM can be readily identified and diagnosed with acute EBV infection. Thus, primary CD4+ and CD8+ T cell responses against the virus can be evaluated. It has been previously found that there is a marked expansion of lytic EBV protein-specific CD8+ T cells early during AIM, with delayed detection of lower frequencies of latent EBV protein-specific CD8+ T cells. The magnitude and specificity of CD4+T cell responses during AIM has been less well characterized. This thesis dissertation presents data from both functional assays and direct staining experiments documenting the timing, magnitude, and antigen-specificity of CD4+ T cells over the course of primary EBV infection. Lytic and latent protein-specific CD4+ T cells were readily detected by intracellular IFN-γ production at presentation with AIM and declined rapidly thereafter. Blood EBV load was also quantitated and found to decrease over time following AIM. By contrast, CD8+T cell IFN-y responses remained high for several weeks following presentation with AIM. Direct staining of lytic epitope-specific CD4+ T cells during AIM revealed high frequencies of virus-specific cells with low proliferative and IFN-γ-producing potential. Blood EBV load in these patients was persistently high through 6 wk following AIM. These data suggest a relationship between high EBV load during acute infection and impaired EBV-specific CD4+ T cell responses, which are compatible with impaired CD4+ T cell responses reported during high viremia associated with other viral infections. This may represent a mechanism by which persistent viruses, such as EBV, are able to establish a life-long infection in their hosts.

Page generated in 0.0282 seconds