• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Towards a Charcterization of the Symmetries of the Nisan-Wigderson Polynomial Family

Gupta, Nikhil January 2017 (has links) (PDF)
Understanding the structure and complexity of a polynomial family is a fundamental problem of arithmetic circuit complexity. There are various approaches like studying the lower bounds, which deals with nding the smallest circuit required to compute a polynomial, studying the orbit and stabilizer of a polynomial with respect to an invertible transformation etc to do this. We have a rich understanding of some of the well known polynomial families like determinant, permanent, IMM etc. In this thesis we study some of the structural properties of the polyno-mial family called the Nisan-Wigderson polynomial family. This polynomial family is inspired from a well known combinatorial design called Nisan-Wigderson design and is recently used to prove strong lower bounds on some restricted classes of arithmetic circuits ([KSS14],[KLSS14], [KST16]). But unlike determinant, permanent, IMM etc, our understanding of the Nisan-Wigderson polynomial family is inadequate. For example we do not know if this polynomial family is in VP or VNP complete or VNP-intermediate assuming VP 6= VNP, nor do we have an understanding of the complexity of its equivalence test. We hope that the knowledge of some of the inherent properties of Nisan-Wigderson polynomial like group of symmetries and Lie algebra would provide us some insights in this regard. A matrix A 2 GLn(F) is called a symmetry of an n-variate polynomial f if f(A x) = f(x): The set of symmetries of f forms a subgroup of GLn(F), which is also known as group of symmetries of f, denoted Gf . A vector space is attached to Gf to get the complete understanding of the symmetries of f. This vector space is known as the Lie algebra of group of symmetries of f (or Lie algebra of f), represented as gf . Lie algebra of f contributes some elements of Gf , known as continuous symmetries of f. Lie algebra has also been instrumental in designing e cient randomized equivalence tests for some polynomial families like determinant, permanent, IMM etc ([Kay12], [KNST17]). In this work we completely characterize the Lie algebra of the Nisan-Wigderson polynomial family. We show that gNW contains diagonal matrices of a speci c type. The knowledge of gNW not only helps us to completely gure out the continuous symmetries of the Nisan-Wigderson polynomial family, but also gives some crucial insights into the other symmetries of Nisan-Wigderson polynomial (i.e. the discrete symmetries). Thereafter using the Hessian matrix of the Nisan-Wigderson polynomial and the concept of evaluation dimension, we are able to almost completely identify the structure of GNW . In particular we prove that any A 2 GNW is a product of diagonal and permutation matrices of certain kind that we call block-permuted permutation matrix. Finally, we give explicit examples of nontrivial block-permuted permutation matrices using the automorphisms of nite eld that establishes the richness of the discrete symmetries of the Nisan-Wigderson polynomial family.

Page generated in 0.0588 seconds