• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A novel SU-8 stamping and electrostatic pulling method for microlens array fabrication

Kuo, Shu-Ming 16 February 2011 (has links)
This research reports a simple and novel method to fabricate microlens arrays by soft stamping the unexposed SU-8 photoresist. A SU-8 based stamp composed of micro-nozzle arrays with a reservoir structure on a glass substrate is first fabricated using a process of dosage control exposure. The unexposed SU-8 is then encapsulated in the cross-linked SU-8 shell and was used as the ¡§ink¡¨ for the stamping process. The proposed SU-8 microlens array is then formed by stamping the formed SU-8 structure on a bare glass substrate at a temperature higher than the glass transition temperature (Tg) of the unexposed SU-8 microlens array. Lenses with various radii of curvature can be formed by controlling the working temperature during the stamping process. In addition, this work also employed a simple electric static pulling scheme to manipulate the fabricated lenses profiles. Aspherical SU-8 microlens arrays with a wide range of tunable focal lengths were fabricated with this approach. Furthermore, we develop an advanced localize E-field control technique to fabricate microlenses with various focus length and microlenses with different tilt angle in a single lens array sheet. A novel grayscale mask fabrication technique is also proposed first. This low cost and rapid method is applied on stepwise and continuous tilt plane fabrication for produces a gradually changed E-field. Hetero axes and focus lengths microlenses are fabricated with this approach. In order to farther understand the real E-field distribution, a novel PCF based E-field sensor fabrication technique is also proposed. This technique also shows the potential on various PCF based devices fabrications.

Page generated in 0.0409 seconds