Spelling suggestions: "subject:"heterocyclic compounds -- derivatives"" "subject:"heterocyclic compounds -- erivatives""
11 |
Studies towards the synthesis of novel, coumarin-based HIV-1 protease inhibitorsRashamuse, Thompho Jason January 2008 (has links)
A series of the Baylis-Hillman adducts have been obtained by reacting protected O-benzylated and unprotected substituted salicylaldehydes with methyl acrylate or tertbutyl acrylate, respectively, using DABCO as catalyst. Treatment of the Baylis-Hillman adducts with HCl in a mixture of acetic acid and acetic anhydride afforded the corresponding 3-(chloromethyl)coumarin derivatives with yields of up to 94%. Similar use of HI afforded the corresponding 3-(iodomethyl)coumarins but, depending on the reaction time, the reduced 3-methyl analogues could also be obtained. Arbuzov reactions of the 3-(halomethyl)coumarin derivatives have been undertaken to afford 4-phosphorylated and 1’-phosphorylated derivatives, regioselectivity being dependent on the halide-leaving group. The 3-(chloromethyl)coumarin derivatives have been subjected to nucleophilic (SN) attack by benzylamine to give the corresponding 3- [(benzylamino)methyl]coumarin derivatives in yields of up to 74%. Further treatment of the 3-[(benzylamino)methyl]coumarin derivatives with chloroacetyl chloride afforded the chloroacetamide derivatives, which exhibit hindered rotation about the amine C(O)-N bond. The acetamide derivatives have also been subjected to Arbuzov reaction conditions to afford the phosphorylated derivatives in yields of up to 86%. In a preliminary modelling study, hydrolysed analogues of the synthesized phosphorylated derivatives have been docked into the active site of the HIV-1 protease enzyme using the Cerius-2 Ligandfit software module to provide an insight into potential receptor-ligand hydrogen bonding interactions.
|
12 |
The design and synthesis of novel HIV-1 protease inhibitorsTukulula, Matshawandile January 2009 (has links)
This study has focused on the synthesis of truncated analogues of the hydroxyethylene dipeptide isosteres, such as Ritonavir®, currently in clinical use as HIV-1 protease inhibitors. The reactions of pyridine-2- and quinoline-2-carbaldehydes with methyl acrylate, in the presence of 1,4-diazabicyclo[2.2.2]octane (DABCO) or 3- hydroxyquinuclidine (3-HQ) as nucleophilic catalysts, have afforded a series of Baylis- Hillman adducts, acetylation and cyclisation of which have provided access to a series of indolizine-2-carboxylate esters. The carboxylic acids, obtained by base-catalyzed hydrolysis of these esters, have been coupled with various protected (and unprotected) amino compounds using the peptide coupling agent, 1,1’-carbonyldiimidazole (CDI), to afford a series of indolizine-2-carboxamides as indolizine-based truncated Ritonavir® analogues in quantitative yield. Aza-Michael reactions of pyridine-3-carbaldehydederived Baylis-Hillman adducts with various amino compounds have provided access to a range of pyridine-based products as mixtures of diastereomeric aza-Michael products. The assignment of the relative stereochemistry of the aza-Michael products has been established using 1-D and 2-NOESY experiments and computer modelling techniques. Computer modelling studies have also been conducted on selected aza-Michael products using ACCELRYS Cerius2 software, followed by interactive docking into the HIV-1 protease receptor site, using AUTODOCK 4.0. The docking studies have revealed hydrogen-bonding interactions between the enzyme and the synthetic ligands. Saturation Transfer Difference (STD) NMR experiments have also indicated binding of some of the aza-Michael products to the HIV-1 protease subtype C enzyme, thus indicating their binding and possible inhibitory potential.
|
13 |
Studies towards the development of novel HIV-1 integrase inhibitorsLee, Yi-Chen January 2010 (has links)
The project has focused on the preparation of several series of compounds designed as potential HIV-1 integrase inhibitors. Various 2-nitrobenzaldehydes have been reacted with two activated alkenes, methyl vinyl ketone (MVK) and methyl acrylate, under Baylis-Hillman conditions to afford α-methylene-β-hydroxylalkyl derivatives in moderate to excellent yields. The reactions were conducted using the tertiary amine catalysts, 1,4-diazabicyclo[2.2.2]octane(DABCO) or 3-hydroxyquinuclidine (3-HQ) with chloroform as solvent, and yields were optimised by varying the catalyst, reagent concentrations and the reaction time. Reductive cyclization of the Baylis-Hillman adducts via catalytic hydrogenation, using 10% palladiumon-carbon catalyst in ethanol, afforded quinoline and quinoline N-oxide derivatives. In some cases “acyclic” reduction products were also isolated. Reaction of the Baylis-Hillman MVK adducts with HCl, has resulted in effective nucleophilic (SN’) displacement of the hydroxyl group to afford allylic chloride derivatives. Direct substitution of these chloro derivatives by secondary or primary amines, followed by catalytic hydrogenation gave quinoline derivatives containing a 3-aminomethyl substituent. The Baylis-Hillman ester adducts obtained from reaction with methyl acrylate were treated directly with various amines to give diastereomeric conjugate addition products. Reactions with piperazine gave N,N’-disubstituted piperazine products. The piperidine derivatives have been dehydrated to give cinnamate esters in moderate yields. The products, which have all been satisfactorily characterised by elemental (HRMS) and spectroscopic (1- and 2-D NMR) analysis, constitute a “library” of compounds for in silico and in vitro studies as potential HIV integrase inhibitors.
|
14 |
Studies directed towards the synthesis of chromone carbaldehyde-derived HIV-1 protease inhibitorsMolefe, Duduzile Mabel January 2008 (has links)
A series of chromone-3-carbaldehydes have been prepared using Vilsmeier-Haack methodology while a corresponding series of chromone-2-carbaldeydes have been synthesized via the Kostanecki-Robinson reaction. Baylis-Hillman reactions have been conducted on both series of chromone carbaldehydes using three different catalysts, viz., 1,4-diazabicyclo(2.2.2]octane (DABCO), 1,8-diazabicyclo[5.4.0]undec- 7-ene (DBU) and 3-hydroxyquinuclidine (3HQ), and acrylonitrile, methyl acrylate and methyl vinyl ketone as the activated alkenes. These reactions have typically (but not always!) afforded both normal Baylis-Hillman and dimeric products. Attention has also been given to the use of 1-methyl-2-pyrrolidine (1-NMP), an ionic liquid, to replace normal organic solvents, and it has been found that, in the presence of DABCO, chromone-3-carbaldehydes afford the dimeric products alone. Reactions of chromone-3-carbaldehydes with methyl vinyl ketone have yielded unexpected, novel adducts, which appear to arise from preferential attack at C(2) in the chromone nucleus. Research on chromone-2-carbaldeydes under Baylis-Hillman conditions has also resulted in the formation of some interesting products instead of the expected Baylis-Hillman adducts. The Baylis-Hillman products have been explored as substrates for aza-Michael reactions using various amino derivatives including protected amino acids in the presence of the tetrabutylammonium bromide (TBAB) and the ionic liquid, 3-butyl-1- methylimidazoleboranetetrafluoride (BmimBF₄), as catalysts. The aza-Michael products have been targeted as truncated ritonavir analogues for investigation as potential HIV -1 protease inhibitors, and representative compounds have been subjected to enzyme inhibition assays to explore the extent and type of inhibition. Lineweaver-Burk and Dixon plots have indicated competitive inhibition in one case as well as non-competitive inhibition in another, and the inhibition constants (Ki) have been compared with that of the ritonavir. Computer modelling studies have also been conducted on selected chromonecontaining derivatives, using the ACCELRYS Cerius² platform. Interactive docking of the chromone-containing ligands into the HIV -1 protease receptor site, using the Ligandfit module, has indicated the importance of hydrogen-bonding interactions mediated by bridging water molecules situated in the receptor cavity. NMR spectroscopy has been used to elucidate complex and competing mechanistic pathways involved in the Baylis-Hillman reactions of selected 2-nitrobenzaldehydes with MVK in the presence of DABCO - reactions which afford the normal BaylisHillman product, the MVK dimer and syn- and anti-Baylis-Hillman type diadducts. The kinetic data confirm the concomitant operation of two pathways and reveal that, in the initial stage of the reaction, the product distribution is kinetically controlled, whereas in the latter stage, thermodynamic control results in the consumption of the normal Baylis-Hillman product and predominance of the anti-diadduct.
|
Page generated in 0.1353 seconds