• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • No language data
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Pathway Pioneer: Heterogenous Server Architecture for Scientific Visualization and Pathway Search in Metabolic Network Using Informed Search

Oswal, Vipul Kantilal 01 August 2014 (has links)
There is a huge demand for analysis and visualization of the biological models. PathwayPioneer is a web-based tool to analyze and visually represent complex biological models. PathwayPioneer generates the initial layout of the model and allows users to customize it. It is developed using .net technologies (C#) and hosted on the Internet Information Service (IIS) server. At back-end it interacts with python-based COBRApy library for biological calculations like Flux Balance Analysis (FBA). We have developed a parallel processing architecture to accommodate processing of large models and enable message-based communication between the .net webserver and python engine. We compared the performance of our online system by loading a website with multiple concurrent dummy users and performed different time intensive operations in parallel. Given two metabolites of interest, millions of pathways can be found between them even in a small metabolic network. Depth First Search or Breadth First search algorithm retrieves all the possible pathways, thereby requiring huge computational time and resources. In Pathway Search using Informed Method, we have implemented, compared, and analyzed three different informed search techniques (Selected Subsystem, Selected Compartment, and Dynamic Search) and traditional exhaustive search technique. We found that the Dynamic approach performs exceedingly well with respect to time and total number of pathways searches. During our implementation we developed a SBML parser which outperforms the commercial libSBML parser in C#.

Page generated in 0.1162 seconds