• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The Heterogenic Final Cell Cycle of Retinal Horizontal Cells

Shirazi Fard, Shahrzad January 2014 (has links)
The cell cycle is a highly complex process that is under the control of several pathways.  Failure to regulate and/or complete the cell cycle often leads to cell cycle arrest, which may be followed by programmed cell death (apoptosis). One cell type that has a variety of unique cell cycle properties is the horizontal cell of the chicken retina. In this thesis we aimed to characterize the final cell cycle of retinal horizontal cells. In addition, the regulation of the cell cycle and the resistance to apoptosis of retinal horizontal cells are investigated. Our results show that the final cell cycle of Lim1-expressing horizontal progenitor cells is heterogenic and three different cell cycle behaviors can be distinguished. The horizontal cells are generated by: (i) an interkinetic nuclear migration with an apical mitosis; (ii) a final cell cycle with an S-phase that is not followed by mitosis, such cells remain with a fully or partially replicated genome; or (iii) non-apical (basal) mitoses. Furthermore, we show that the DNA damage response pathway is not triggered during the heterogenic final cell cycle of horizontal progenitor cells. However, chemically induced DNA damage activated the DNA damage response pathway without leading to cell cycle arrest, and the horizontal progenitor cells entered mitosis in the presence of DNA damage. This was not followed by apoptosis, despite the horizontal cells being able to functionally activate p53, p21CIP1/waf1, and caspase-3. Finally, we show that FoxN4 is expressed in horizontal progenitor cells and is required for their generation. Over-expression of FoxN4 causes cell death in several neuronal retinal cell types, except horizontal cells, where it results in an overproduction. In conclusion, in this thesis, a novel cell cycle behavior, which includes endoreplication not caused by DNA damage and a basal mitosis that can proceed in the presence of DNA damage, is described. The cell cycle and cell survival processes are of particular interest since retinal horizontal cells are suggested to be the cell-of-origin for retinoblastoma.

Page generated in 0.0532 seconds