• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 3
  • 3
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Benchmark description of an advanced burner test reactor and verification of COMET for whole core criticality analysis in fast reactors

Ulmer, Richard Marion 27 August 2014 (has links)
This work developed a stylized three dimensional benchmark problem based on Argonne National Laboratory's conceptual Advanced Burner Test Reactor design. This reactor is a sodium cooled fast reactor designed to burn recycled fuel to generate power while transmuting long term waste. The specification includes heterogeneity at both the assembly and core levels while the geometry and material compositions are both fully described. After developing the benchmark, 15 group cross sections were developed so that it could be used for transport code method verification. Using the aforementioned benchmark and 15 group cross sections, the Coarse-Mesh Transport Method (COMET) code was compared to Monte Carlo code MCNP5 (MCNP). Results were generated for three separate core cases: control rods out, near critical, and control rods in. The cross section groups developed do not compare favorably to the continuous energy model; however, the primary goal of these cross sections is to provide a common set of approachable cross sections that are widely usable for numerical methods development benchmarking. Eigenvalue comparison results for MCNP vs. COMET are strong, with two of the models within one standard deviation and the third model within one and a third standard deviation. The fission density results are highly accurate with a pin fission density average of less than 0.5% for each model.
2

A coarse mesh radiation transport method for prismatic block thermal reactors in two dimensions

Connolly, Kevin John 07 July 2011 (has links)
In this paper, the coarse mesh transport method is extended to hexagonal geometry. This stochastic-deterministic hybrid transport method calculates the eigenvalue and explicit pin fission density profile of hexagonal reactor cores. It models the exact detail within complex heterogeneous cores without homogenizing regions or materials, and neither block-level nor core-level asymmetry poses any limitations to the method. It solves eigenvalue problems by first splitting the core into a set of coarse meshes, and then using Monte Carlo methods to create a library of response expansion coefficients, found by expanding the angular current in phase-space distribution using a set of polynomials orthogonal on the angular half-space defined by mesh boundaries. The coarse meshes are coupled by the angular current at their interfaces. A deterministic sweeping procedure is then used to iteratively construct the solution. The method is evaluated using benchmark problems based on a gas-cooled, graphite-moderated high temperature reactor. The method quickly solves problems to any level of detail desired by the user. In this paper, it is used to explicitly calculate the fission density of individual fuel pins and determine the reactivity worth of individual control rods. In every case, results for the core multiplication factor and pin fission density distribution are found within several minutes. Results are highly accurate when compared to direct Monte Carlo reference solutions; errors in the eigenvalue calculations are on the order of 0.02%, and errors in the pin fission density average less than 0.1%.
3

Drop Test Simulation Of A Munition With Foams And Parametric Study On Foam Geometry And Material

Gerceker, Bora 01 September 2012 (has links) (PDF)
Unintentional drop of munitions could be encountered during the storage, transportation, and loading processes. In such an impact, malfunctioning of crucial components of munitions is the worst scenario that may be encountered and level of loads should not reach to critical levels. From two possible methods, experimental one is not frequently applied owing to high cost of money and time. On the contrary, particularly in last couple of years, interest is shifted to numerical simulations such as finite element method. In this thesis, foam materials will be investigated as energy absorbers to reduce the effect of loads during the impact. However, modeling the behavior of foam materials by FE codes is a challenging task. In other words, more than a few material parameters which are not commonly specified in literature are sufficient to represent the behavior of foams in an appropriate way. For this reason, material characteristics of the selected two foam materials, expanded polypropylene and v polyethylene, have been obtained in this study. Characterization of EPP and PE is followed by the selection of the appropriate material models in LS-DYNA which is a nonlinear explicit finite element code. Drop tests of munitions on which initially specified foam materials are integrated were done to identify the load levels. Validation of drop tests which are explained in detail in this thesis has been accomplished by LS-DYNA. Final section of the thesis is related to optimization of the foam geometry which will provide reducing load levels to allowable limits. After optimization studies, three alternative geometries which succeed in to reduce loads to allowable load levels were reached. Finally, one of three alternatives is selected considering cost and manufacturing difficulties.

Page generated in 0.0771 seconds