Spelling suggestions: "subject:"HfC/SiC multilayer"" "subject:"HfC/SiC multilayered""
1 |
Dépôt chimique en phase vapeur de carbures de chrome, de silicium et d'hafnium assisté par injection liquide pulsée / Chemical vapor deposition of chromium, silicon and hafnium carbides assisted by pulsed liquid injectionBoisselier, Guilhaume 19 February 2013 (has links)
Des revêtements céramiques sont obtenus par un procédé de dépôt chimique en phase vapeur assisté par injection liquide pulsée (DLICVD) de précurseurs organométalliques. Des dépôts de carbure de chrome (CrCx) sont élaborés dans un réacteur tubulaire à paroi chaude à partir d’une solution de bis(benzène) chrome dans du toluène pour des températures de 475 °C et sous pression partielle d’azote (pression totale 50 Torr). Une couche d’accroche pouvant être nécessaire pour revêtir des pièces métalliques, tels des aciers et alliages, par un revêtement céramique non-oxyde de type CrCx, des couches de chrome métallique (Cr) et des carbures mixtes Cr-Si-C ont également été élaborées par ce procédé DLICVD. Ainsi, l’ajout d’un additif à base de chlore ou de soufre (par exemple l’hexachlorobenzène ou le thiophénol) dans la solution BBC/toluène permet la déposition de films de chrome métallique (Cr) à 475 °C. De plus, l’utilisation d’une solution de précurseur contenant simultanément du Si et du Cr tel que le tetrakis(trimethylsilylmethyl)chromium dans du toluène mène au dépôt d’un carbure mixte Cr-Si-C pouvant jouer le rôle d’interphase dans des assemblage céramique-métal. Des films de carbure de silicium (SiC) sont obtenus à partir de deux précurseurs (1,3 disilabutane et polysilyléthylène) injectés purs ou en solution également dans du toluène. Les dépôts sont faits dans une gamme de température comprise entre 700 et 800 °C, sous pression partielle d’azote (pression totale 50 Torr). Les films obtenus sont des films amorphes de SiC contenant une faible quantité d’hydrogène (provenant du mécanisme de décomposition des précurseurs) : a-SiC:H. Les films sont stœchiométriques dans le cas de l’injection de précurseur pur, et quasi stœchiométrique lorsque les précurseurs sont dilués dans du toluène. Les films amorphes tels que déposés deviennent nanocristallins en présentant la structure cubique du SiC après recuit sous vide à 1000 °C. L’influence du solvant (toluène) sur la composition, la morphologie et la vitesse de croissance des dépôts est discutée en fonction des systèmes chimiques étudiés et des conditions expérimentales, en particulier les conditions locales dans le réacteur DLICVD telles que les gradients de température et de concentration. Des films de carbure de hafnium (HfC) sont également élaborés par le même procédé à partir d’une solution de bis(cyclopentadiényl)diméthyl hafnium dans du toluène après avoir testé plusieurs précurseurs. Une température de 750 °C est utilisée et l’utilité d’une pression partielle de dihydrogène dans le gaz vecteur azote est démontrée (pression totale 50 Torr, 423 sccm de N2 et 77 sccm de H2). Tels que déposés, ces films sont riches en carbone (C-rich HfCx) et ont une structure quasi-amorphe. Ils deviennent nanocristallins après recuit sous vide à 1000 °C. Enfin, la mise en œuvre de films multicouches céramiques par DLICVD à paroi chaude est mise en évidence par l’élaboration de revêtements multicouches HfC/SiC à 750 °C, sous pression partielle d’un mélange de gaz vecteur N2/H2. Le contrôle du procédé permet une nano structuration de ces revêtements multicouches jusqu’à une bi-période de 100 nm (empilement de 100 couches d’environ 50 nm chacune). La stabilité thermique de ces architectures et des tests préliminaires de résistance à l’oxydation à haute température des films de SiC et HfC/SiC sont discutés. / Ceramic coatings are made from metalorganic precursors by a chemical vapour deposition process assisted by pulsed liquid injection (DLICVD). Chromium carbide (CrCx) films are grown in a tubular hot wall reactor from a solution of bis(benzene)chromium in toluene under partial pressure of nitrogen at 475 °C (total pressure set at 50 Torr). Bonding layers are useful on metallic components, such as steels and alloys, with non-oxide ceramic films such as CrCx, to that purpose metallic chromium (Cr) and mixed carbides Cr-Si-C have been made by DLICVD. Furthermore, adding a chlorinated or sulfur based additive (e.g. hexachlorobenzene or thiophenol) in the BBC/toluene solution allows depositing metallic chromium (Cr) at 475 °C. Moreover, using a precursor containing Si and Cr as tetrakis(trimethylsilylmethyl)-chromium in toluene leads to the deposition of Cr-Si-C mixed carbide. Silicon carbide films are made from two precursors (1,3-disilabutane and polysilylethylene) that have been injected either pure or diluted in toluene. A temperature range of 700 to 800 °C has been used under a partial pressure of nitrogen (total pressure of 50 Torr). SiC films are amorphous and contain a small quantity of hydrogen (hydrogen comes from precursor pyrolysis mechanism): a-SiC:H. Films are stoichiometric when pure precursors are injected, and quasi stoichiometric when precursors are diluted in toluene. As deposited coatings are amorphous and become nanocristalline (cubic SiC structure) after annealing at 1000 °C under vacuum. The influences of the solvent (toluene) on the composition, morphology and growth rate are discussed as a function of the chemical system and experimental conditions, in particular reactor gradient conditions such as temperature and precursors concentration in gas phase. Hafnium carbide films are also made using a solution of bis(cyclopentadiényl)diméthyl hafnium in toluene by the same process. Temperature is set to 750 °C and hydrogen partial pressure has been shown useful (total pressure of 50 Torr, 423 sccm of N2 and 77 sccm of H2). As-deposited films are C-rich HfCx and quasi amorphous. They become nanocristalline after annealing at 1000 °C under vacuum. Finally, ceramics multilayer HfC/SiC coatings were deposited by DLICVD at 750 °C under a partial pressure of a mixture of N2/H2. The process allows a good control of the multilayer nanostructure. Thermal stability and high temperature oxidation preliminary tests on SiC and HfC/SiC films are discussed.
|
Page generated in 0.0676 seconds