• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

On Three Dimensional High Lift Flow Computations

Gopalakrishna, N January 2014 (has links) (PDF)
Computing 3D high lift flows has been a challenge to the CFD community because of three important reasons: complex physics, complex geometries and large computational requirements. In the recent years, considerable progress has been made in understanding the suitability of various CFD solvers in computing 3D high lift flows, through the systematic studies carried out under High Lift Prediction workshops. The primary focus of these workshops is to assess the ability of the CFD solvers to predict CLmax and αmax associated with the high lift flows, apart from the predictability of lift and drag of such flows in the linear region. Now there is a reasonable consensus in the community about the ability of the CFD solvers to predict these quantities and fresh efforts to further understand the ability of the CFD solvers to predict more complex physics associated with these flows have already begun. The goal of this thesis is to assess the capability of the computational methods in predicting such complex flow phenomena associated with the 3D High-Lift systems. For evaluation NASA three element Trapezoidal wing configuration which poses a challenging task in numerical modeling was selected. Unstructured data based 3D RANS solver HiFUN (HiFUN stands for High Resolution Flow Solver for UNstructured Meshes) is used in investigating the high lift flow. The computations were run fully turbulent, using the one equation Spalart-Allmaras turbulence model. A summary of the results obtained using the flow solver HiFUN for the 3D High lift NASA Trapezoidal wing are presented. Hybrid unstructured grids have been used for the computations. Grid converged solution obtained for the clean wing and the wing with support brackets, are compared with experimental data. The ability of the solver to predict critical design parameters associated with the high lift flow, such as αmax and CLmax is demonstrated. The utility of the CFD tools, in predicting change in aerodynamic parameters in response to perturbational changes in the configuration is brought out. The solutions obtained for the high lift configuration from two variants of the Spalart-Allmaras turbulence model are compared. To check the unsteadiness in the flow, particularly near stall, unsteady simulations were performed on static grid. Lastly, hysteresis on lower leg of lift curve is discussed, the results obtained for quasi-steady and dynamic unsteady simulations are presented. Inferences from the study on useful design practices pertaining to the 3D high lift flow simulations are summarized.
2

A 3D High Resolution Unstructured Viscous Flow Solver

Mishra, Asitav 08 1900 (has links) (PDF)
No description available.
3

Development Of A General Purpose Flow Solver For Euler Equations

Shende, Nikhil Vijay 07 1900 (has links) (PDF)
No description available.
4

Experimental Analysis of Shock Stand off Distance over Spherical Bodies in Hypersonic Flows

Thakur, Ruchi January 2015 (has links) (PDF)
One of the characteristics of the high speed ows over blunt bodies is the detached shock formed in front of the body. The distance of the shock from the stagnation point measured along the stagnation streamline is termed as the shock stand o distance or the shock detachment distance. It is one of the most basic parameters in such ows. The need to know the shock stand o distance arises due to the high temperatures faced in these cases. The biggest challenge faced in high enthalpy ows is the high amounts of heat transfer to the body. The position of the shock is relevant in knowing the temperatures that the body being subjected to such ows will have to face and thus building an efficient system to reduce the heat transfer. Despite being a basic parameter, there is no theoretical means to determine the shock stand o distance which is accepted universally. Deduction of this quantity depends more or less on experimental or computational means until a successful theoretical model for its predictions is developed. The experimental data available in open literature for spherical bodies in high speed ows mostly lies beyond the 2 km/s regime. Experiments were conducted to determine the shock stand o distance in the velocity range of 1-2 km/s. Three different hemispherical bodies of radii 25, 40 and 50 mm were taken as test models. Since the shock stand o distance is known to depend on the density ratio across the shock and hence gamma (ratio of specific heats), two different test gases, air and carbon dioxide were used for the experiments here. Five different test cases were studied with air as the test gas; Mach 5.56 with Reynolds number of 5.71 million/m and enthalpy of 1.08 MJ/kg, Mach 5.39 with Reynolds number of 3.04 million/m and enthalpy of 1.42 MJ/kg Mach 8.42 with Reynolds number of 1.72 million/m and enthalpy of 1.21 MJ/kg, Mach 11.8 with Reynolds number of 1.09 million/m and enthalpy of 2.03 MJ/kg and Mach 11.25 with Reynolds number of 0.90 million/m and enthalpy of 2.88 MJ/kg. For the experiments conducted with carbon dioxide as test gas, typical freestream conditions were: Mach 6.66 with Reynolds number of 1.46 million/m and enthalpy of 1.23 MJ/kg. The shock stand o distance was determined from the images that were obtained through schlieren photography, the ow visualization technique employed here. The results obtained were found to follow the same trend as the existing experimental data in the higher velocity range. The experimental data obtained was compared with two different theoretical models given by Lobb and Olivier and was found to match. Simulations were carried out in HiFUN, an in-house CFD package for Euler and laminar own conditions for Mach 8 own over 50 mm body with air as the test gas. The computational data was found to match well with the experimental and theoretical data

Page generated in 0.0211 seconds