• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Image indexing and retrieval using component trees / Indexation et recherche d’images par arbres des coupes

Bosilj, Petra 25 January 2016 (has links)
Cette thèse explore l’utilisation de représentations hiérarchiques des images issues de la morphologie mathématique, les arbres des coupes, pour la recherche et la classification d’images. Différents types de structures arborescentes sont analysés et une nouvelle classification en deux superclasses est proposée, ainsi qu’une contribution à l’indexation et à la représentation de ces structures par des dendogrammes. Deux contributions à la recherche d’images sont proposées, l’une sur la détection de régions d’intérêt et l’autre sur la description de ces régions. Les régions MSER peuvent être détectées par un algorithme s’appuyant sur une représentation des images par arbres min et max. L’utilisation d’autres structures arborescentes sous-jacentes permet de détecter des régions présentant des propriétés de stabilité différentes. Un nouveau détecteur, basé sur les arbres des formes, est proposé et évalué en recherche d’images. Pour la description des régions, le concept de spectres de formes 2D permettant de décrire globalement une image est étendu afin de proposer un descripteur local, au pouvoir discriminant plus puissant. Ce nouveau descripteur présente de bonnes propriétés à la fois de compacité et d’invariance à la rotation et à la translation. Une attention particulière a été portée à la préservation de l’invariance à l’échelle. Le descripteur est évalué à la fois en classification d’images et en recherche d’images satellitaires. Enfin, une technique de simplification des arbres de coupes est présentée, qui permet à l’utilisateur de réévaluer les mesures du niveau d’agrégation des régions imposé par les arbres des coupes. / This thesis explores component trees, hierarchical structures from Mathematical Morphology, and their application to image retrieval and related tasks. The distinct component trees are analyzed and a novel classification into two superclasses is proposed, as well as a contribution to indexing and representation of the hierarchies using dendrograms. The first contribution to the field of image retrieval is in developing a novel feature detector, built upon the well-established MSER detection. The tree-based implementation of the MSER detector allows for changing the underlying tree in order to produce features of different stability properties. This resulted in the Tree of Shapes based Maximally Stable Region detector, leading to improvements over MSER in retrieval performance. Focusing on feature description, we extend the concept of 2D pattern spectra and adapt their global variant to more powerful, local schemes. Computed on the components of Min/Max-tree, they are histograms holding the information on distribution of image region attributes. The rotation and translation invariance is preserved from the global descriptor, while special attention is given to achieving scale invariance. We report comparable results to SIFT in image classification, as well as outperforming Morphology-based descriptors in satellite image retrieval, with a descriptor shorter than SIFT. Finally, a preprocessing or simplification technique for component trees is also presented, allowing the user to reevaluate the measures of region level of aggregation imposed on a component tree. The thesis is concluded by outlining the future perspectives based on the content of the thesis.

Page generated in 0.1598 seconds