• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 13
  • 8
  • 6
  • 5
  • 4
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 98
  • 98
  • 51
  • 22
  • 19
  • 14
  • 12
  • 10
  • 10
  • 10
  • 10
  • 10
  • 9
  • 9
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Bayesian Conjoint Analyses with Multi-Category Consumer Panel Data

Yuan, Yuan 27 September 2021 (has links)
No description available.
32

Bayesian Hidden Markov Model in Multiple Testing on Dependent Count Data

Su, Weizhe January 2020 (has links)
No description available.
33

Distribution of woodpecker activity relative to wooden utility structure usage in the southeastern United States

Wright, Hannah Chelsea 06 August 2021 (has links)
Woodpeckers are a group of avian species that cause damage to wooden power utility structures. In the southeastern United States, Tennessee Valley Authority (TVA), has accrued an estimated $5 million USD annually from woodpecker damage. Previous work has focused on effectiveness of reactive mitigation and restoration efforts with little investigation of preventative methods. To address this knowledge gap, this study will i) use species distribution model techniques to predict damage suitability across the TVA service area, ii) use Bayesian hierarchical community model techniques to estimate species richness of the woodpecker community in the service area, and iii) recommend target areas for increased preventative measures in the service area. The suitability map indicated that damage was most likely to occur in the southwestern portions of the TVA service area. Woodpecker species richness was stable across the environmental covariate values estimated with 2-3 species found throughout the service area.
34

A Bayesian Hierarchical Model for Multiple Comparisons in Mixed Models

Li, Qie 19 July 2012 (has links)
No description available.
35

Quantifying Model Error in Bayesian Parameter Estimation

White, Staci A. 08 October 2015 (has links)
No description available.
36

Robust Bayes in Hierarchical Modeling and Empirical BayesAnalysis in Multivariate Estimation

Wang, Xiaomu January 2015 (has links)
No description available.
37

Dimension Reduced Modeling of Spatio-Temporal Processes with Applications to Statistical Downscaling

Brynjarsdóttir, Jenný 26 September 2011 (has links)
No description available.
38

Bayesian Hierarchical Modeling and Markov Chain Simulation for Chronic Wasting Disease

Mehl, Christopher 05 1900 (has links)
In this thesis, a dynamic spatial model for the spread of Chronic Wasting Disease in Colorado mule deer is derived from a system of differential equations that captures the qualitative spatial and temporal behaviour of the disease. These differential equations are incorporated into an empirical Bayesian hierarchical model through the unusual step of deterministic autoregressive updates. Spatial effects in the model are described directly in the differential equations rather than through the use of correlations in the data. The use of deterministic updates is a simplification that reduces the number of parameters that must be estimated, yet still provides a flexible model that gives reasonable predictions for the disease. The posterior distribution generated by the data model hierarchy possesses characteristics that are atypical for many Markov chain Monte Carlo simulation techniques. To address these difficulties, a new MCMC technique is developed that has qualities similar to recently introduced tempered Langevin type algorithms. The methodology is used to fit the CWD model, and posterior parameter estimates are then used to obtain predictions about Chronic Wasting Disease.
39

Modeling Driving Risk Using Naturalistic Driving Study Data

Fang, Youjia 21 October 2014 (has links)
Motor vehicle crashes are one of the leading causes of death in the United States. Traffic safety research targets at understanding the cause of crash, preventing the crash, and mitigating crash severity. This dissertation focuses on the driver-related traffic safety issues, in particular, on developing and implementing contemporary statistical modeling techniques on driving risk research on Naturalistic Driving Study data. The dissertation includes 5 chapters. In Chapter 1, I introduced the backgrounds of traffic safety research and naturalistic driving study. In Chapter 2, the state-of-practice statistical methods were implemented on individual driver risk assessment using NDS data. The study showed that critical-incident events and driver demographic characteristics can serve as good predictors for identifying risky drivers. In Chapter 3, I developed and evaluated a novel Bayesian random exposure method for Poisson regression models to account for situations where the exposure information needs to be estimated. Simulation studies and real data analysis on Cellphone Pilot Analysis study data showed that, random exposure models have significantly better model fitting performances and higher parameter coverage probabilities as compared to traditional fixed exposure models. The advantage is more apparent when the values of Poisson regression coefficients are large. In Chapter 4, I performed comprehensive simulation-based performance analyses to investigate the type-I error, power and coverage probabilities on summary effect size in classical meta-analysis models. The results shed some light for reference on the prospective and retrospective performance analysis in meta-analysis research. In Chapter 5, I implemented classical- and Bayesian-approach multi-group hierarchical models on 100-Car data. Simulation-based retrospective performance analyses were used to investigate the powers and parameter coverage probabilities among different hierarchical models. The results showed that under fixed-effects model context, complex secondary tasks are associated with higher driving risk. / Ph. D.
40

Novel Preprocessing and Normalization Methods for Analysis of GC/LC-MS Data

Nezami Ranjbar, Mohammad Rasoul 02 June 2015 (has links)
We introduce new methods for preprocessing and normalization of data acquired by gas/liquid chromatography coupled with mass spectrometry (GC/LC-MS). Normalization is desired prior to subsequent statistical analysis to adjust variabilities in ion intensities that are not caused by biological differences. There are different sources of experimental bias including variabilities in sample collection, sample storage, poor experimental design, noise, etc. Also, instrument variability in experiments involving a large number of runs leads to a significant drift in intensity measurements. We propose new normalization methods based on bootstrapping, Gaussian process regression, non-negative matrix factorization (NMF), and Bayesian hierarchical models. These methods model the bias by borrowing information across runs and features. Another novel aspect is utilizing scan-level data to improve the accuracy of quantification. We evaluated the performance of our method using simulated and experimental data. In comparison with several existing methods, the proposed methods yielded significant improvement. Gas chromatography coupled with mass spectrometry (GC-MS) is one of the technologies widely used for qualitative and quantitative analysis of small molecules. In particular, GC coupled to single quadrupole MS can be utilized for targeted analysis by selected ion monitoring (SIM). However, to our knowledge, there are no software tools specifically designed for analysis of GS-SIM-MS data. We introduce SIMAT, a new R package for quantitative analysis of the levels of targeted analytes. SIMAT provides guidance in choosing fragments for a list of targets. This is accomplished through an optimization algorithm that has the capability to select the most appropriate fragments from overlapping peaks based on a pre-specified library of background analytes. The tool also allows visualization of the total ion chromatogram (TIC) of runs and extracted ion chromatogram (EIC) of analytes of interest. Moreover, retention index (RI) calibration can be performed and raw GC-SIM-MS data can be imported in netCDF or NIST mass spectral library (MSL) formats. We evaluated the performance of SIMAT using several experimental data sets. Our results demonstrate that SIMAT performs better than AMDIS and MetaboliteDetector in terms of finding the correct targets in the acquired GC-SIM-MS data and estimating their relative levels. / Ph. D.

Page generated in 0.0831 seconds