Spelling suggestions: "subject:"high -Tc superconductor"" "subject:"high -Tc superconductors""
1 |
Scanning Tunneling Microscopy Studies of an Electron Doped High-T<subscript>c</subscript> Superconductor Pr<subscript>0.88</subscript>LaCe<subscript>0.12</subscript>CuO<subscript>4-δ</subscript>Kunwar, Shankar January 2009 (has links)
Thesis advisor: Vidya Madhavan / <p>It has been more than two decades since the first high temperature superconductor was discovered. In this time there has been tremendous progress in understanding these materials both theoretically and experimentally. Some important questions however remain to be answered; one of them is the temperature dependence of the superconducting gap which is in turn tied to question of the origin of the pseudogap and its connection with superconductivity.</p> <p> In this thesis, we present detailed Scanning Tunneling Microscopy (STM) spectroscopic studies of an electron doped superconductor, Pr<subscript>0.88</subscript>LaCe<subscript>0.12</subscript>CuO<subscript>4-δ</subscript> (PLCCO). The electron doped compounds form an interesting venue for STM studies for many reasons. In the hole-doped materials, especially in the underdoped side of the phase diagram, there is mounting evidence of a second gap that survives to high temperatures (high temperature pseudogap) that may have a different origin from superconductivity. This complicates studies of the temperature dependence of the superconducting gap in these materials. In PLCCO however, there is little evidence for a high temperature pseudogap potentially allowing us to address the question of the temperature evolution of the superconducting gap without the complication of a second gap. Secondly, the low T<subscript>c</subscript> of the optimally doped materials makes it easily accessible to temperature dependent STM studies. Finally, while hole-doped materials have been extensively studied by scanning tunneling microscopy (STM), there have been no detailed STM spectroscopic studies on the electron doped compounds. </p> <p> In the first part of the thesis, we investigate the effect of temperature on the superconducting gap of optimally doped PLCCO with T<subscript>c</subscript> = 24K. STM spectroscopy data is analyzed to obtain the gap as a function of temperature from 5K to 35K. The gap is parameterized with a d-wave form and the STM spectra are fit at each temperature to extract the gap value. A plot of this gap value as a function of temperature shows clear deviations from what is expected from BCS theory. We find that similar to the hole-doped superconductors a fraction of the surface still shows a gap above T<subscript>c</subscript>. The implications of our finding to the pseudogap phase are discussed.</p> <p> In the second part of the thesis, STM spectra are analyzed to determine the effect of impurities or vacancies on the local density of states. Electron doped superconductors require a post-annealing process to induce superconductivity. It is claimed that Cu vacancies in the CuO<subscript>2</subscript> planes which suppress superconductivity are healed by this process. This implies that for the same doping, a sample with higher T<subscript>c</subscript> should have fewer impurities compared to a sample with lower T<subscript>c</subscript>. We studied two PLCCO samples with 12% Ce doping; one with higher T<subscript>c</subscript> (24K) and the other with lower T<subscript>c</subscript> (21K). Through quasiparticle scattering study we find that there are more impurities in 21K samples than 24K sample, consistent with the picture of Cu vacancies in as grown samples. Finally, we present a discussion of the bosonic modes observed in the STM spectra and their connection to the spin excitations measured by neutron scattering.</p> / Thesis (PhD) — Boston College, 2009. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Physics.
|
Page generated in 0.075 seconds