• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Homogenous and Carbon Graded High Manganese Steels

Ghasri Khouzani, Morteza January 2015 (has links)
High manganese steels offer an outstanding combination of high strength and ductility owing to their high sustained strain hardening rates. The strain-induced deformation products in these steels (mechanical twins and ε-martensite) increase the work hardening rates by acting as barriers for dislocation motion. A significant determinant of the deformation products in these steels is the value of stacking fault energy (SFE), which is in turn strongly dependent on the alloy manganese and carbon contents. The main objective of present work is to investigate the microstructural evolution and mechanical behaviour of both homogenous and compositionally graded high-Mn steels, where C compositional gradients were introduced into the latter. The starting materials in this work were cold rolled Fe-22Mn-0.6C and Fe-30Mn-0.6C steels. For both starting alloys, decarburization and annealing heat-treatments were used to obtain four homogenous alloys with carbon contents of approximately 0, 0.2, 0.4 and 0.6 wt. % with similar grain sizes. Decarburization heat treatments were also applied to obtain three carbon graded Fe-22Mn-C alloys (G1, G2, G3) and one carbon graded Fe-30Mn-C alloy. Microstructural observations determined the deformation products to be mechanical ε-martensite for the 22Mn-0C and 22Mn-0.2C alloys and mechanical twins for the 22Mn-0.6C, 30Mn-0.2C, 30Mn-0.4C and 30Mn-0.6C alloys. For the 22Mn-0.4C and 30Mn-0C alloys, both mechanical twins and ε-martensite were observed during deformation. For all the carbon graded Fe-22Mn-C alloys, the dominant deformation products changed from mechanical ε-martensite at the near-surface layer to a mixture of mechanical twins and ε-martensite or mechanical twins only at the inner cross-section layers. In the case of carbon graded Fe-30Mn-C alloy, the deformation products altered from a combination of mechanical ε-martensite and twins at the near-surface layer to mechanical twins at the inner cross-section layers. For all the homogenous alloys, the ultimate tensile strength and uniform elongation increased with increasing alloy carbon content. The work hardening behaviour of these steels was successfully modelled using a modified Kocks-Mecking model, in which the work hardening was the sum of the dislocation glide contribution and the phase transition contribution – mechanical twinning and/or mechanical ε-martensite formation – as dictated by the formation kinetics of both deformation products. For both alloy systems, the mechanical properties of the carbon graded alloys were not as good as the monolithic 22Mn-0.6C and 30Mn-0.6C alloys due to their lower sustained high work hardening rates. Both the mechanical ε-martensite and twin formation were found to follow a sigmoidal kinetic with strain. In the case of twin formation homogenous alloys, the saturated volume fraction of twins was directly proportional to the alloy SFE. For the ε-martensite formation homogenous alloys, the ε-martensite volume fraction at fracture was found to be strongly dependent on alloy SFE, where it declined sigmoidally with increasing alloy SFE. It was also found that the ε-martensite volume fraction at fracture – approximately 0.7 – was independent of SFE for SFE  6 mJ/m2. This indicated that the critical damage mechanism was determined by the kinetics of the ε-martensite formation, which was in turn dictated by the alloy SFE. Finally, it was found that the stress for the onset of mechanical twinning – and consequent increase in the work hardening rate – for the higher SFE, twinning dominated alloys was linearly proportional to the alloy SFE. / Thesis / Doctor of Philosophy (PhD)
2

Development of magnetic bond-order potentials for Mn and Fe-Mn

Drain, John Frederick January 2013 (has links)
While group VII 4d Tc and 5d Re have hexagonally close-packed (hcp) ground states, 3d Mn adopts the complex chi-phase which exhibits non-collinear magnetism. Density functional theory (DFT) calculations have shown that without magnetism the chi-phase remains the ground state of Mn implying that magnetism is not the critical factor, as is commonly believed, in driving the anomalous stability of the chi-phase over hcp. Using a tight-binding (TB) model it is found that while harder potentials stabilise close-packed hcp, a softer potential stabilises the more open chi-phase. By analogy with the structural trend from open to close-packed phases down the group IV elements, the anomalous stability of the chi-phase in Mn is shown to be due to 3d valent Mn lacking d states in the core which leads to an effectively softer atomic repulsion between the atoms than in 4d Tc and 5d Re. Subsequently an analytic Bond-Order Potential (BOP) is developed to investigate the structural and magnetic properties of elemental Mn at 0 K. It is derived within BOP theory directly from a new short-ranged orthogonal d-valent TB model of Mn, the parameters of which are fitted to reproduce the DFT binding energy curves of the five experimentally observed phases of Mn, alpha, beta, gamma, delta, and epsilon-Mn. Not only does the BOP reproduce qualitatively DFT binding energy curves of the five different structure types, it also predicts the complex collinear antiferromagnetic (AFM) ordering in alpha-Mn, the ferrimagnetic (FiM) ordering in beta-Mn and the AFM ordering in the other phases that are found by DFT. A BOP expansion including 14 moments is sufficiently converged to reproduce most of the properties of the TB model with the exception of the elastic shear constants which require further moments. Magnetic analytic BOPs are also developed for Fe and Fe-Mn. The Fe model correctly reproduces trends in the structural stabilities of the common metallic structures except that AFM hcp is overstabilised. Reproduction of the elastic constants with a 9-moment BOP is reasonable although as is found for the Mn BOP the elastic shear constants require more moments to converge. Vacancy formation energies are close to those determined by experiment and DFT and the relative stabilities of self-interstitial atom (SIA) defects in ferromagnetic bcc Fe are correctly reproduced. The SIA formation energies are found to be better than those calculated with existing BOP models. The Fe-Mn TB and BOP models were challenging to fit and nonmagnetic face-centred cubic (fcc) structures are overstabilised. Furthermore within BOP an incorrect magnetic solution is predicted for one fcc structure resulting in poor reproduction of the DFT stacking fault energies. Refitting the bond integrals might help to better reproduce the nonmagnetic hcp-fcc energy differences while an environment-dependent Stoner parameter could help provide the flexibility needed to correctly capture the magnetic energy differences.
3

Soldagem por fricção e mistura mecânica de aço austenítico alto manganês com efeito TRIP / Friction stir welding of an austenitic high manganese TRIP steel

Mendonça, Roberto Ramon 08 August 2014 (has links)
O desenvolvimento e utilização de novos materiais, mais leves e com propriedades mecânicas superiores aos atuais, se mostram extremamente importantes devido à redução de peso e consequentemente redução na emissão de gases poluentes que poderiam gerar. As ligas de Fe-Mn-C com elevados teores de Mn (20-30%) representam um desenvolvimento muito recente de aços austeníticos, que, através dos seus mecanismos diferenciados de deformação reúnem elevada resistência mecânica com grande ductilidade. Essa nova classe de materiais estruturais possibilita uma efetiva redução de custos na produção através do reduzido tempo de processamento (sem a necessidade de tratamentos térmicos especiais e de processamentos termomecânicos controlados). A soldagem é, atualmente, o mais importante processo de união de metais usado no setor industrial. Dentro da variada gama de processos de soldagem existentes, a soldagem por fricção e mistura mecânica (SFMM, em inglês: Friction Stir Welding - FSW) se destaca por ser um processo de união no estado sólido que apresenta uma série de vantagens sobre as tecnologias convencionais de soldagem por fusão. Do ponto de vista metalúrgico, uma das suas principais vantagens se manifesta justamente na junção de materiais dissimilares, visto que o grau de mistura de composições e as transformações de fases entre materiais incompatíveis podem ser minimizados. Outra vantagem é que há um refino de grão no cordão de solda comparado com a microestrutura fundida que se forma nos processos convencionais. Este trabalho teve como objetivo produzir em escala laboratorial os aços de alta liga ao manganês com efeito TRIP, avaliar o impacto da velocidade de rotação da ferramenta na soldagem por fricção e mistura mecânica e avaliar a microestrutura e propriedades mecânicas das juntas soldadas. A microestrutura das juntas soldadas caracterizou-se pela presença apenas da zona de mistura e do metal base, além da formação de \'anéis de cebola\' na zona de mistura, esta não mostrou sinais de transformação martensítica induzida por deformação e sofreu recristalização dinâmica para todas as velocidades de rotação investigadas com a formação de grãos refinados e com morfologia equiaxial. Os corpos de tração fraturaram todos nos metais de base, mostrando que as propriedades mecânicas da zona de mistura foram superiores à do metal base e que a variação de aporte térmico alcançada com a velocidade de rotação da ferramenta não comprometeu a qualidade das juntas soldadas. / The development and application of new light materials with superior mechanical properties is extremely important to weight reduction in vehicles and consequently reduction of greenhouse gases emission. The Fe-Mn-C steels with high Mn (20-30%) are a recent development of austenitic steels, which, due to their different mechanisms of deformation, possesses high strength and high ductility as well. In addition, this new type of structural steel allows an effective reduction of manufacturing costs due to its reduced processing time (it does not require special heat treatments and controlled thermo mechanical processing). Welding has been one of the most important processes for joining metals. Among the available welding processes, friction stir welding (FSW) is notable for being a solid state process with great advantages over the conventional welding methods. In the mettalurgical point of view, welding dissimilar materials is a significant advantage of FSW over the other process. The main reason is the reduction of mixture of material and phase transformations between the incompatible materials in the weld. Moreover, grain refinement is another advantage from the process. The present study aimed to produce laboratorial scale high Mn steels with TRIP effect, investigate the impact of tool speed ont the microstructure and mechanical properties of friction stir welded joints. The microstructure of the welded joints exhibited only the stirred zone (SZ) and the base material (BM), besides the presence of ´onion rings´ within the stirred zone. The SZ exhibited no signs of martensite suggesting that dynamic recrystallization have occurred for all the speed tested. Moreover, the grains in the SZ had equiaxial morphology and were significantly refined. The fracture of the tensile specimens occurred in the base material, bringing to light that the welding process was beneficial to the mechanical properties. Furthermore, the variation of heat input achieved with the speed did not compromise the quality of welded joints.
4

Soldagem por fricção e mistura mecânica de aço austenítico alto manganês com efeito TRIP / Friction stir welding of an austenitic high manganese TRIP steel

Roberto Ramon Mendonça 08 August 2014 (has links)
O desenvolvimento e utilização de novos materiais, mais leves e com propriedades mecânicas superiores aos atuais, se mostram extremamente importantes devido à redução de peso e consequentemente redução na emissão de gases poluentes que poderiam gerar. As ligas de Fe-Mn-C com elevados teores de Mn (20-30%) representam um desenvolvimento muito recente de aços austeníticos, que, através dos seus mecanismos diferenciados de deformação reúnem elevada resistência mecânica com grande ductilidade. Essa nova classe de materiais estruturais possibilita uma efetiva redução de custos na produção através do reduzido tempo de processamento (sem a necessidade de tratamentos térmicos especiais e de processamentos termomecânicos controlados). A soldagem é, atualmente, o mais importante processo de união de metais usado no setor industrial. Dentro da variada gama de processos de soldagem existentes, a soldagem por fricção e mistura mecânica (SFMM, em inglês: Friction Stir Welding - FSW) se destaca por ser um processo de união no estado sólido que apresenta uma série de vantagens sobre as tecnologias convencionais de soldagem por fusão. Do ponto de vista metalúrgico, uma das suas principais vantagens se manifesta justamente na junção de materiais dissimilares, visto que o grau de mistura de composições e as transformações de fases entre materiais incompatíveis podem ser minimizados. Outra vantagem é que há um refino de grão no cordão de solda comparado com a microestrutura fundida que se forma nos processos convencionais. Este trabalho teve como objetivo produzir em escala laboratorial os aços de alta liga ao manganês com efeito TRIP, avaliar o impacto da velocidade de rotação da ferramenta na soldagem por fricção e mistura mecânica e avaliar a microestrutura e propriedades mecânicas das juntas soldadas. A microestrutura das juntas soldadas caracterizou-se pela presença apenas da zona de mistura e do metal base, além da formação de \'anéis de cebola\' na zona de mistura, esta não mostrou sinais de transformação martensítica induzida por deformação e sofreu recristalização dinâmica para todas as velocidades de rotação investigadas com a formação de grãos refinados e com morfologia equiaxial. Os corpos de tração fraturaram todos nos metais de base, mostrando que as propriedades mecânicas da zona de mistura foram superiores à do metal base e que a variação de aporte térmico alcançada com a velocidade de rotação da ferramenta não comprometeu a qualidade das juntas soldadas. / The development and application of new light materials with superior mechanical properties is extremely important to weight reduction in vehicles and consequently reduction of greenhouse gases emission. The Fe-Mn-C steels with high Mn (20-30%) are a recent development of austenitic steels, which, due to their different mechanisms of deformation, possesses high strength and high ductility as well. In addition, this new type of structural steel allows an effective reduction of manufacturing costs due to its reduced processing time (it does not require special heat treatments and controlled thermo mechanical processing). Welding has been one of the most important processes for joining metals. Among the available welding processes, friction stir welding (FSW) is notable for being a solid state process with great advantages over the conventional welding methods. In the mettalurgical point of view, welding dissimilar materials is a significant advantage of FSW over the other process. The main reason is the reduction of mixture of material and phase transformations between the incompatible materials in the weld. Moreover, grain refinement is another advantage from the process. The present study aimed to produce laboratorial scale high Mn steels with TRIP effect, investigate the impact of tool speed ont the microstructure and mechanical properties of friction stir welded joints. The microstructure of the welded joints exhibited only the stirred zone (SZ) and the base material (BM), besides the presence of ´onion rings´ within the stirred zone. The SZ exhibited no signs of martensite suggesting that dynamic recrystallization have occurred for all the speed tested. Moreover, the grains in the SZ had equiaxial morphology and were significantly refined. The fracture of the tensile specimens occurred in the base material, bringing to light that the welding process was beneficial to the mechanical properties. Furthermore, the variation of heat input achieved with the speed did not compromise the quality of welded joints.

Page generated in 0.0591 seconds