Spelling suggestions: "subject:"high bperformance telemetry aprocessing"" "subject:"high bperformance telemetry eprocessing""
1 |
AFFORDABLE GROUND STATION EQUIPMENT FOR COMMERCIAL AND SCIENTIFIC REMOTE SENSING APPLICATIONSChesney, James R., Bakos, Roger 11 1900 (has links)
International Telemetering Conference Proceedings / October 30-November 02, 1995 / Riviera Hotel, Las Vegas, Nevada / The remote sensing industry is experiencing an unprecedented rush of activity to
deploy commercial and scientific satellites. NASA and its international partners are
leading the scientific charge with The Earth Observation System (EOS) and the
International Space Station Alpha (ISSA). Additionally, there are at least ten countries
promoting scientific/commercial remote sensing satellite programs. Within the United
States, commercial initiatives are being under taken by a number of companies
including Computer Technology Associates, Inc., EarthWatch, Inc., Space Imaging,
Inc., Orbital Imaging Corporation and TRW, Inc. This activity is due to factors
including: technological advances which have lead to significant reductions in the
costs to build and deploy satellites; an awareness of the importance of understanding
human impact on the ecosystem; and a desire to collect and sell data some believe will
be worth $1.5 billion (USD) per year within five years.
The success and usefulness of these initiatives, both scientific and commercial,
depends largely on the ease and cost of providing remotely sensed data to value added
resellers and end-users. A number of these spacecraft will provide an interface directly
to users. To provide these data to the largest possible user base, ground station
equipment must be affordable and the data must be distributed in a timely manner
(meaning seconds or minutes, not days) over commercial network and
communications equipment.
TSI TelSys, Inc. is developing ground station equipment that will perform both
traditional telemetry processing and the bridging and routing functions required to
seamlessly interface commercial local- and wide-area networks and satellite
communication networks. These products are based on Very Large Scale Integration
(VLSI) components and pipelined, multi-processing architectures. This paper
describes TelSys’ product family and its envisioned use within a ground station.
|
2 |
High Performance CCSDS Processing Systems for EOS-AM Spacecraft Integration and TestBrown, Barbara, Bennett, Toby, Betancourt, Jose 11 1900 (has links)
International Telemetering Conference Proceedings / October 30-November 02, 1995 / Riviera Hotel, Las Vegas, Nevada / The Earth Observing System-AM (EOS-AM) spacecraft, the first in a series of spacecraft for the EOS, is scheduled for launch in June of 1998. This spacecraft will carry high resolution instruments capable of generating large volumes of earth science data at rates up to 150 Mbps. Data will be transmitted in a packet format based upon the Consultative Committee for Space Data Systems (CCSDS) Advanced Orbiting Systems (AOS) recommendations. The Data Systems Technology Division (DSTD) at NASA's Goddard Space Flight Center (GSFC) has developed a set of high performance CCSDS return-link processing systems to support testing and verification of the EOS-AM spacecraft. These CCSDS processing systems use Versa Module Eurocard bus (VMEBus) Very Large Scale Integration (VLSI)-based processing modules developed for the EOS ground segment to acquire and handle the high rate EOS data. Functions performed by these systems include frame synchronization, Reed-Solomon error correction, fill frame removal, virtual channel sorting, packet service processing, and data quality accounting. The first of the systems was delivered in October 1994 to support testing of the onboard formatting equipment. The second and third systems, delivered in April 1995, support spacecraft checkout and verification. This paper will describe the function and implementation of these systems.
|
3 |
A VERY LOW COST 150 MBPS DESKTOP CCSDS GATEWAYDavis, Don, Bennett, Toby, Harris, Jonathan 11 1900 (has links)
International Telemetering Conference Proceedings / October 30-November 02, 1995 / Riviera Hotel, Las Vegas, Nevada / The wide use of standard packet telemetry protocols based on the Consultative
Committee for Space Data Systems (CCSDS) recommendations in future space
science missions has created a large demand for low-cost ground CCSDS processing
systems. Some of the National Aeronautics and Space Administration (NASA)
missions using CCSDS telemetry include Small Explorer, Earth Observing System
(EOS), Space Station, and Advanced Composite Explorer. For each mission, ground
telemetry systems are typically used in a variety of applications including spacecraft
development facilities, mission control centers, science data processing sites, tracking
stations, launch support equipment, and compatibility test systems. The future
deployment of EOS spacecraft allowing direct broadcast of data to science users will
further increase demand for such systems.
For the last ten years, the Data Systems Technology Division (DSTD) at NASA
Goddard Space Flight Center (GSFC) has been applying state-of-the-art commercial
Very Large Scale Integration (VLSI) Application Specific Integrated Circuit (ASIC)
technology to further reduce the cost of ground telemetry data systems. As a
continuation of this effort, a new desktop CCSDS processing system is being
prototyped that offers up to 150 Mbps performance at a replication cost of less than
$20K. This system acts as a gateway that captures and processes CCSDS telemetry
streams and delivers them to users over standard commercial network interfaces. This
paper describes the development of this prototype system based on the Peripheral
Component Interconnect (PCI) bus and 0.6 micron complementary metal oxide
semiconductor (CMOS) ASIC technology. The system performs frame
synchronization, bit transition density decoding, cyclic redundancy code (CRC) error
checking, Reed-Solomon decoding, virtual channel sorting/filtering, packet extraction,
and quality annotation and accounting at data rates up to and beyond 150 Mbps.
|
Page generated in 0.1157 seconds