• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 442
  • 105
  • 68
  • 58
  • 35
  • 22
  • 22
  • 22
  • 22
  • 22
  • 22
  • 19
  • 14
  • 10
  • 7
  • Tagged with
  • 950
  • 950
  • 102
  • 100
  • 92
  • 89
  • 84
  • 80
  • 80
  • 77
  • 75
  • 67
  • 65
  • 62
  • 59
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

High pressure P-V-T properties of seawater and related liquids

Fine, Rana Arnold, January 1975 (has links)
Thesis (Ph. D.)--University of Miami, 1975. / Vita. Includes bibliographical references (leaves 149-158).
72

The effect of water on mantle melting

Hall, Leonie January 1999 (has links)
No description available.
73

Multiphysics coupled simulations of gas turbines

Segui Troth, Luis Miguel 14 November 2017 (has links) (PDF)
The resolution of differential equations of diverse degree of complexity is necessary to simulate the phenomena present in the complex turbomachinery flows and in particular, requires accounting for unsteady effects that may have a preponderant role. Today, only the LES (Large Eddy Simulation) fully compressible approach has the required accuracy to predict the physics associated to reactive and turbulent flows in such complex geometries. This work covers the numerical modelling of physics in the near-wall region of a high-pressure turbine blade with special focus on thermal predictions. This work was supported by the European project COPA-GT, dedicated to the numerical multi-physics simulation of a complete gas turbine.
74

High-pressure pool boiling and physical insight of engineered surfaces

Li, Nanxi January 1900 (has links)
Doctor of Philosophy / Department of Mechanical and Nuclear Engineering / Amy R. Betz / Boiling is a very effective way of heat transfer due to the latent heat of vaporization. Large amount of heat can be removed as bubbles form and leave the heated surface. Boiling heat transfer has lots of applications both in our daily lives and in the industry. The performance of boiling can be described with two important parameters, i.e. the heat transfer coefficient (HTC) and the critical heat flux (CHF). Enhancing the performance of boiling will greatly increase the efficiency of thermal systems, decrease the size of heat exchangers, and improve the safety of thermal facilities. Boiling heat transfer is an extremely complex process. After over a century of research, the mechanism for the HTC and CHF enhancement is still elusive. Previous research has demonstrated that fluid properties, system pressures, surface properties, and heater properties etc. have huge impact on the performance of boiling. Numerous methods, both active and passive, have been developed to enhance boiling heat transfer. In this work, the effect of pressure was investigated on a plain copper substrate from atmospheric pressure to 45 psig. Boiling heat transfer performance enhancement was then investigated on Teflon© coated copper surfaces, and graphene oxide coated copper surfaces under various system pressures. It was found that both HTC and CHF increases with the system pressure on all three types of surfaces. Enhancement of HTC on the Teflon© coated copper surface is contributed by the decrease in wettability. It is also hypothesized that the enhancement in both HTC and CHF on the graphene oxide coated surface is due to pinning from micro and nanostructures in the graphene oxide coating or non-homogeneous wettability. Condensation and freezing experiments were conducted on engineered surfaces in order to further characterize the pinning effect of non-homogeneous wettability and micro/nano structure of the surface.
75

Experiments on Turbulent Nonpremixed Flames at Elevated Pressures

Boyette, Wesley 11 1900 (has links)
Understanding reacting flows in conditions relevant to practical combustion devices is a challenging but critically important task. In such devices, combustion nearly always occurs in a turbulent flow field and at high pressure. The formation of soot is highly sensitive to these parameters. However, little research has been conducted in conditions that replicate the complex physics of such devices in simplified configurations. This body of work focuses on the development of a rig suitable for investigating turbulence-chemistry interactions in simple jet flames at high pressure and high Reynolds numbers and discusses results from the initial experiments in that rig. First, the flame structure of syngas flames at pressures up to 12 bar and at Reynolds numbers up to 83,500 is investigated using OH-PLIF. A corrugation factor is used to characterize the wrinkling of the flame fronts and PDFs of this factor show that the corrugation of the flame front is a very strong function of the Reynolds number, but in most cases, the pressure has no effect. Separations in the OH layers become less probable as the pressure increases if the Reynolds number remains constant. Next, the flame structure of nitrogen-diluted ethylene flames at pressures up to 5 bar and Reynolds numbers up to 50,000 are examined using OH-PLIF. Again, the corrugation factor is used to show that the flame fronts become more wrinkled as the Reynolds number increases. Further analysis shows that the extent of wrinkling is limited and further increases in turbulence result in more frequent breaks in the OH layer. Lastly, two soot studies on the ethylene flames are presented. The soot particle size distribution is characterized in two flames at atmospheric pressure. The time-averaged, mean particle diameter on the centerline increases as the distance from the nozzle increases. Soot volume fraction measurements are made with LII in three flames at different pressures and Reynolds numbers. Soot production is found to be much more sensitive to changes in pressure than changes in Reynolds number. Increases in the mean soot volume fraction as the pressure increases are due to higher instantaneous soot concentrations and lower soot intermittency.
76

A New Method of Measuring Flow Stress for Improved Modeling of Friction Stir Welding

Prymak, David John 17 June 2021 (has links)
Deficiencies in friction stir welding (FSW) numerical modelling are identified. Applicability of flow stress data derived from hot compression, hot torsion, and split Hopkinson bar testing methods is assessed. A new method of measuring flow stresses in the stir zone of a friction stir welding tool is developed. This test utilizes a non-consumable flat-faced cylindrical tool of different geometries that induces a vertical and rotational load on the material of interest. A constant vertical load and rpm value is used for each test yielding the resulting motor torque and temperature generation to define the material response. Experimental samples are cross-sectioned, polished, and etched to reveal the material flow behavior below the tool. A viscosity-based model is used to quantify the shear stress and rim shear rate present in the shear layer below the tool. This test is referred to as the high-pressure shear (HPS) experiment. A parameter window is developed for two alloys of interest, AA6061-T6 and AA2219-T87 and results are reported. The HPS experiments yields flow stress estimates that are pressure and strain rate dependent. Different tool geometries are explored to understand the impact of the "dead zone"at the center axis of the tool. When compared to hot compression and hot torsion the HPS flow stress datasets trend 20-86 % lower across the two materials tested.
77

Safety and quality of high pressure (HP) treated fish : evaluation of pressure destruction kinetics of pathogens and associated quality changes during storage

Zaman, Shafi Ullah January 2004 (has links)
No description available.
78

The effect of pressure on the viscosity of polymer melts/

Nyun, Hla January 1974 (has links)
No description available.
79

Multichannel Surface Discharge Switches

Ip, Wai-Ting 04 1900 (has links)
<p>High pressure surface discharge switches have become the subject of applied research in recent years due to their important application in pulse power systems. The purpose of this study is to gain a better understanding of the subject so that an optimum design of the switch may be achieved. The surface discharge phenomena is examined under single channel static breakdown condition to attempt to isolate individual processes involved. The multichannel switch developed by the NRC is tested with a resistive load assembly to determine the optimum operating conditions. The lifetime characteristic is also studied using a small experimental device. Finally, two models for the switch are developed to fit the observed data. </p> / Thesis / Master of Engineering (MEngr)
80

Volumetric Properties and Viscosity of Lubricant Oils and the Effects of Additives at High Pressure and Temperatures

Avery, Katrina Nichole 26 February 2024 (has links)
This research is directed to the characterization of the thermodynamic properties and viscosity of lubricant base oils modified with polymeric additives. Several groups of mineral and synthetic base oils, including Ultra S4, Ultra S8, and poly alpha olefin PAO 4 have been studied. Among the various types of additives explored were viscosity index modifiers, polyisobutylene polymers (PIBs), and dispersants. The viscosity index modifiers are studied in terms of different polymer architectures, molecular weights, presence or absence of functional groups, and their concentrations. The dispersants are studied in terms of concentration, molecular weight, and presence of capping groups. Density data, as the basic thermodynamic data, are generated using a high-pressure variable-volume view-cell over a pressure range from 10 to 40 MPa and a range of temperatures from 298 to 398 K. The density data are then correlated with the Sanchez-Lacombe equation of state, from which key thermodynamic properties, namely isothermal compressibility, isobaric expansivity, and internal pressure are derived. These properties offer a rational approach to better understand molecular packing in lubricants under high pressure and temperature conditions which has direct impact on film formation. Viscosity determinations are carried out using a custom-designed high-pressure rotational viscometer. Data were generated in the pressure range from 10 to 40 MPa, but at temperatures ranging from 298 to 373 K as a function of shear rate up to 1270 s-1. Viscosity data were then correlated with density which provides interpretations in terms of free-volume and density scaling models. The molecular parameters produced from these correlations support the interpretation of molecular packing under high pressure and temperature conditions. The results of this study included several key findings. With regards to density, the addition of viscosity index modifiers to Ultra S4 base oil caused the density to increase, except for the addition of functionalized olefin copolymers (OCPs) which caused the density to decrease. This was true with both high and low molecular weight additives. In the case of Ultra S8 base oil, the addition of OCPs generally decreased the density, while the addition of polymethacrylates (PMAs) caused the density to increase. In terms of compressibility and expansivity, the addition of high molecular weight viscosity index modifiers to Ultra S4 base oil generally decreased both these properties. However, the compressibility increased with the addition of 5 wt % functionalized PMA and 2 wt % star styrene butadiene (SSB). Furthermore, there was less of a decrease in compressibility with the addition of functionalized additives. With the addition of low molecular weight viscosity index modifiers to Ultra S4 base oil, little change was observed in compressibility, and the expansivity decreased to a lesser degree than with the addition of high molecular weight viscosity index modifiers. Viscosity index modifiers did not alter the compressibility of Ultra S8 base oil. Compared to Ultra S4, expansivity in Ultra S8 decreased to a lesser extent. The internal pressure was observed to be lowered to a greater degree in either Ultra S4 or Ultra S8 base oil with the addition of additives with more rigid internal structures (PMA and SSB). The decrease occurred to a greater degree with the addition of the higher molecular weight versions of additives studied and/or with the incorporation of functional groups to the additives. Although density changes were often greater with the addition of additives to the Ultra S8 base oil, all other derived thermodynamic properties, including internal pressure, changed to a greater degree with the addition of additives to the lower molecular weight Ultra S4 base oil. The viscosity generally increased to varying degrees with the addition of different additives to either base oil. The addition of functionality and higher molecular weight additives led to more consistent viscosity increases at higher temperatures. At the highest viscosity isotherm tested, 373 K, the addition of viscosity index modifiers resulted in similar viscosity values in either base oil, even though the viscosity of Ultra S4 at 373 K is much lower than the viscosity of Ultra S8 at this temperature. However, at 298 K, the viscosity index modifiers increased the viscosity of the Ultra S8 base oil to much higher values than the viscosity of the Ultra S4 base oil. Model based correlations of viscosity showed that with addition of high molecular weight viscosity index modifiers to Ultra S4 base oil, the parameters that are linked to free-volume overlap and the density dependence were more sensitive to the addition of OCPs than with the addition of PMAs and SSBs. These changes were reflected in larger free-volume overlap parameters and larger density exponent values. However, with a low molecular weight addition, the resulting parameters changed more with the addition of PMAs than OCPs. Overall, the addition of polymers with more rigid architecture led to more similar changes in correlative parameters across molecular weights from that of the original base oil, while for the OCP addition, the molecular weight had more of an influence on the degree of change. With addition of viscosity index modifiers to the Ultra S8 base oil, the architecture of the additive had more of an influence on the viscosity correlation parameters as the addition of PMA led to more noticeable changes in the parameters (resulting in lower free-volume overlap parameters, and a lower density exponent) than the addition of OCP, irrespective of the molecular weight or functionality. In either base oil, the addition of PMA led to lower free-volume overlap parameters and density exponent values than the addition of OCP. In this study it was observed that the addition of functionality, or polar groups to viscosity index modifiers, led to more desirable thermodynamic and rheological property changes to the lubrication base oil. This change was more definitive with the addition of polymers with more rigid architecture, such as PMAs and SSBs in contrast to the OCPs. The study on the addition of PIBs and capped or uncapped dispersants showed little variation in the resulting density and viscosity values when added to Ultra S4 base oil. However, the compressibility in these systems generally increased while the expansivity decreased except with the addition of PIBs. The internal pressure decreased to similar levels for all additive additions, except for the lowest molecular weight PIB, in which there was little change. The study on the addition of PIBs to different base oils showed that low molecular weight PIBs had the potential to disrupt the packing of a more uniform PAO 4 base oil and change the thermodynamic properties and correlation parameters to a greater degree than with the addition of higher molecular weight PIBs. This resulted in higher compressibility and internal pressure values with the addition of low molecular weight PIB compared to the higher molecular weight PIBs. However, there was little variation in viscosity with any of the PIB additions, except for the highest molecular weight PIB. / Doctor of Philosophy / Several legislations have recently been passed which are aimed at improving the fuel efficiency in cars. One way to improve fuel efficiency is to reduce friction through improvements on the lubrication systems such as engine oils and transmission fluids. This applies to lubricants operating under cold start conditions and up to operating condition of approximately 100ºC. Additionally, the lubricants are subject to extreme pressure conditions when they are squeezed between contacts such as gears or clutch plates. Therefore, it is crucial to explore lubricant performance under high pressure and temperature conditions. The lubricants that are preferred are those that form a layer that completely protects metal contacts without causing the contacts difficulty in moving, causing a loss in efficiency. The desired film layer thickness under high pressure and temperature conditions can be improved using different additives. This thesis explores high pressure and temperature behavior of lubricant systems modified with different types of additives using uniquely designed lab instrumentation. The focus is on understanding their volumetric and flow properties, which directly influence the film layer and effectiveness of the lubricant. Volumetric properties are characterized by measurement of density as a function of temperature and pressure. Density data provides insights on molecular packing in lubricant systems. Flow properties, specifically, resistance to flow, can help analyze a potential loss in efficiency caused by the lubricant systems. The thesis is thus a comprehensive study on the volumetric and flow properties of lubricants at a wide range of temperatures ( from 298 to 398 K) and pressures (from 10 to 40 MPa) and how these properties are affected in the presence of additives that aim to improve lubricant performance.

Page generated in 0.0699 seconds