• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The GMT-Consortium Large Earth Finder (G-CLEF): an optical Echelle spectrograph for the Giant Magellan Telescope (GMT)

Szentgyorgyi, Andrew, Baldwin, Daniel, Barnes, Stuart, Bean, Jacob, Ben-Ami, Sagi, Brennan, Patricia, Budynkiewicz, Jamie, Chun, Moo-Young, Conroy, Charlie, Crane, Jeffrey D., Epps, Harland, Evans, Ian, Evans, Janet, Foster, Jeff, Frebel, Anna, Gauron, Thomas, Guzmán, Dani, Hare, Tyson, Jang, Bi-Ho, Jang, Jeong-Gyun, Jordan, Andres, Kim, Jihun, Kim, Kang-Miin, Mendes de Oliveira, Claudia Mendes, Lopez-Morales, Mercedes, McCracken, Kenneth, McMuldroch, Stuart, Miller, Joseph, Mueller, Mark, Oh, Jae Sok, Onyuksel, Cem, Ordway, Mark, Park, Byeong-Gon, Park, Chan, Park, Sung-Joon, Paxson, Charles, Phillips, David, Plummer, David, Podgorski, William, Seifahrt, Andreas, Stark, Daniel, Steiner, Joao, Uomoto, Alan, Walsworth, Ronald, Yu, Young-Sam 09 August 2016 (has links)
The GMT-Consortium Large Earth Finder (G-CLEF) will be a cross-dispersed, optical band echelle spectrograph to be delivered as the first light scientific instrument for the Giant Magellan Telescope (GMT) in 2022. G-CLEF is vacuumenclosed and fiber-fed to enable precision radial velocity (PRV) measurements, especially for the detection and characterization of low-mass exoplanets orbiting solar-type stars. The passband of G-CLEF is broad, extending from 3500 angstrom to . This passband provides good sensitivity at blue wavelengths for stellar abundance studies and deep red response for observations of high-redshift phenomena. The design of G-CLEF incorporates several novel technical innovations. We give an overview of the innovative features of the current design. G-CLEF will be the first PRV spectrograph to have a composite optical bench so as to exploit that material's extremely low coefficient of thermal expansion, high in-plane thermal conductivity and high stiffness-to-mass ratio. The spectrograph camera subsystem is divided into a red and a blue channel, split by a dichroic, so there are two independent refractive spectrograph cameras. The control system software is being developed in model-driven software context that has been adopted globally by the GMT. G-CLEF has been conceived and designed within a strict systems engineering framework. As a part of this process, we have developed a analytical toolset to assess the predicted performance of G-CLEF as it has evolved through design phases.
2

Simulations de détection d’atmosphères d’exoplanètes avec ANDES

Beaudoin, André 06 1900 (has links)
Le European Extremely Large Telescope présentement en construction au Chili, sera le plus grand télescope optique jamais construit, avec son miroir primaire de 39 mètres de diamètre. Un de ses instruments, ANDES (ArmazoNes high Dispersion Echelle Spectrograph), combinera l’optique adaptative et la spectroscopie à haute dispersion dans les bandes photométriques YJH pour permettre notamment l’étude de la composition chimique d’atmosphères d’exoplanètes potentiellement habitables. La détection de la vie sur une exoplanète candidate commence nécessairement par l’étude de son atmosphère, et spécifiquement sa composition chimique. Celle-ci peut en effet révéler la présence de biosignatures, c’est-à-dire la signature spectrale de molécules qui ne pourraient exister sans la présence de la vie. Une paire de molécules particulièrement intéressante est la paire dioxygène (O2) et méthane (CH4), soient deux molécules qui peuvent être créées par des processus biotiques, mais qui, laissées à elles-mêmes, réagissent ensemble dans l’atmosphère pour générer de l’eau (H2O) et du dioxyde de carbone (CO2) jusqu’à la déplétion de l’une des deux (Thompson et al., 2022). La présence simultanée d’O2 et de CH4 nécessite donc des réactions chimiques hors équilibre comme celles associées avec l’activité biologique. ANDES sera équipé de tous les modules théoriquement nécessaires pour détecter la lumière réfléchie d'une exoplanète, incluant une interface d'optique adaptative qui minimise la lumière parasite de l'exoplanète localisée tout près du coeur de l'étoile, une unité de champ intégral permettant de disséquer l'image de l'étoile en des dizaines de spaxels, chacun alimentant un spectrographe infrarouge à haute dispersion. Des techniques statistiques bayesiennes sont ensuite utilisées pour détecter le signal atmosphérique de l'exoplanète enfoui dans le spectre de l'étoile. Ce travail décrit des simulations détaillées de tous ces modules afin de déterminer les capacités d’ANDES à détecter l’atmosphère d’exoplanètes potentiellement habitables, notamment Proxima b, la plus rapprochée du Système Solaire. Les simulations révèlent que si Proxima b a une atmosphère identique à celle de la Terre, l’eau y serait détectable en moins d'une nuit (6 heures), alors que les détections d’O2, de CO2 et de CH4 nécessiteraient jusqu’à 320, 420 et 1200 heures d’observation, respectivement. / The European Extremely Large Telescope, currently under construction in Chile, will be the largest telescope ever built, with its primary mirror measuring 39 meters in diameter. One of its instruments, ANDES (ArmazoNes high Dispersion Echelle Spectrograph), will combine adaptive optics and high dispersion dpectroscopy in the Y JH photometric bands. This combination will allow the study of the chemical composition of atmospheres of potentially habitable exoplanets. The search for life on a candidate exoplanet necessitates the study of its atmosphere, specically its chemical composition. This can reveal the presence of biosignatures, i.e the spectral signature of molecules that cannot exist without life. One inriguing pair of molecules is dioxygen (O2) and methane (CH4). Both can be created through biotic processes, but left to themselves, they form water (H2O) and carbon dioxide (CO2) until one of the two is depleted. The simultaneous presence of O2 and CH4 requires out-of-equilibrium chemical reactions, such as those associated with biological activity. ANDES will be equipped with all the crucial modules to detect the reflected light from an exoplanet. It includes an adaptive optics front-end interface that minimizes the stray light from the exoplanet located very close to the star’s core, an integrated field unit that dissects the star’s image into dozens of spaxels, each feeding a high-dispersion infrared spectrograph. Bayesian statistics are then used to detect the exoplanet’s atmospheric signal buried within the star’s spectrum This work describes detailed simulations of all these modules to determine ANDES’ ca- pabilities in detecting the atmosphere of potentially habitable exoplanets, notably Proxima b, the closest to the Solar System. The simulations reveal that if Proxima b has an atmo- sphere similar to Earth’s, water could be detectable in less than one night (6 hours), while detections of O2, CO2 and CH4 could require up to 320, 420 and 1200 hours of observations, respectively.

Page generated in 0.0916 seconds