• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Durable high early strength concrete

Porras, Yadira A. January 1900 (has links)
Master of Science / Department of Civil Engineering / Mustaque A. Hossain / Based on a 2017 report on infrastructure by the American Society of Civil Engineers, 13% of Kansas public roads are in poor condition. Furthermore, reconstruction of a two-lane concrete pavement costs between $0.8 and $1.15 million dollars per lane mile. High early strength Portland cement concrete pavement (PCCP) patches are widely used in pavement preservation in Kansas due to the ability to open to traffic early. However, these repairs done by the Kansas Department of Transportation (KDOT) deteriorate faster than expected, though, prompting a need for inexpensive, durable high early strength concrete repair mixtures that meet KDOT standards (i.e., a 20-year service life). This study developed an experimental matrix consisting of six PCCP patching mixture designs with varying cement content and calcium chloride dosage. The mixtures were subjected to isothermal calorimetry, strength testing, drying shrinkage, and various durability tests. The effects of cement content and calcium chloride dosage on concrete strength and durability were then investigated. In addition, the compressive strength development with time, the split tensile versus compressive strength relationship, and the shrinkage strain of the PCCP patching mixtures were compared to established relationships provided by the American Concrete Institute (ACI). Results showed a maximum 3% increase in total heat generated by various concrete paste samples in isothermal calorimetry testing. The minimum compressive strength of 1,800 psi required by KDOT could likely be obtained using any of the PCCP mixtures, regardless of the cement content or calcium chloride dosage used in the study. Furthermore, surface resistivity tests for mixtures containing calcium chloride could result in erroneous measurements. Only one mixture satisfied the maximum expansion and minimum relative dynamic modulus of elasticity required by KDOT. Some ACI relationships for shrinkage and strength development do not appear to be valid for high early strength PCCP patching mixtures.
2

Development of High Early-Strength Concrete for Accelerated Bridge Construction Closure Pour Connections

Castine, Stephanie 11 July 2017 (has links) (PDF)
Accelerated bridge construction (ABC) has become a popular alternative to using traditional construction techniques in new bridge construction and existing bridge deck replacement because of the reduction of time spent in field activities. A key feature of bridges built using ABC techniques is the extensive use of prefabricated components. Prefabricated components are joined in the field using small volume closure pours involving high performance materials (steel and concrete) to ensure adequate transfer of forces between components. To date, the materials developed for closure pours have been based on proprietary components, so a need has arisen for development of mixes that use generic components. The goal of this research was to create a method to develop concrete mixtures that are designed using generic constituents and that satisfy performance requirements of accelerated bridge construction closure pours in New England, primarily high early strength and long-term durability. Two concrete mixtures were developed with a primary goal of reaching high-early strength while maintaining constructability. The secondary goal of the concrete mixtures was to be durable; therefore, measures were taken during the development of the concrete mixture to generate a mixture that also had durable properties.

Page generated in 0.0666 seconds