• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 5
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Modeling of Pipeline Transients: Modified Method of Characteristics

Wood, Stephen L 08 July 2011 (has links)
The primary purpose of this research was to improve the accuracy and robustness of pipeline transient modeling. An algorithm was developed to model the transient flow in closed tubes for thin walled pipelines. Emphasis was given to the application of this type of flow to pipelines with small radius 90° elbows. An additional loss term was developed to account for the presence of 90° elbows in a pipeline. The algorithm was integrated into an optimization routine to fit results from the improved model to experimental data. A web based interface was developed to facilitate the pre- and post- processing operations. Results showed that including a loss term that represents the effects of 90° elbows in the Method of Characteristics (MOC) [1] improves the accuracy of the predicted transients by an order of magnitude. Secondary objectives of pump optimization, blockage detection and removal were investigated with promising results.
2

High level waste system impacts from acid dissolution of sludge

Ketusky, Edward Thomas 31 March 2008 (has links)
Currently at the Savannah River Site (SRS), there are fifteen single-shell, 3.6-million liter tanks containing High Level Waste. To close the tanks, the sludge must be removed. Mechanical methods have had limited success. Oxalic acid cleaning is now being considered as a new technology. This research uses sample results and chemical equilibrium software to develop a preferred flowsheet and evaluate the acceptability of the system impacts. Based on modeling and testing, between 246,000 to 511,000 l of 8 wt% oxalic acid were required to dissolve a 9,000 liter Purex sludge heel. For SRS H-Area modified sludge, 322,000 to 511,000 l were required. To restore the pH of the treatment tank slurries, approximately 140,000 to 190,000 l of 50 wt% NaOH or 260,000 to 340,000 l of supernate were required. When developing the flowsheet, there were two primary goals to minimize downstream impacts. The first was to ensure that the Resultant oxalate solids were transferred to DWPF, without being washed. The second was to transfer the remaining soluble sodium oxalates to the evaporator drop tank, so they do not transfer through or precipitate in the evaporator pot. Adiabatic modeling determined the maximum possible temperature to be 73.5°C and the maximum expected temperature to be 64.6°C. At one atmosphere and at 73.5°C, a maximum of 770 l of water vapor was generated, while at 64.6°C a maximum 254 l of carbon dioxide were generated. Although tank wall corrosion was not a concern, because of the large cooling coil surface area, the corrosion induced hydrogen generation rate was calculated to be as high as 10,250 l/hr. Since the minimum tank purge exhaust was assumed to be 5,600 l/hr, the corrosion induced hydrogen generation rate was identified as a potential concern. Excluding corrosion induced hydrogen, trending the behavior of the spiked constituents of concern, and considering conditions necessary for ignition, energetic compounds were shown not to represent an increased risk Based on modeling, about 56,800 l of Resultant oxalates could be added to a washed sludge batch with minimal impact on the number of additional glass canisters produced. For each sludge batch, with 1 to 3 heel dissolutions, about 60,000 kg of sodium oxalate entered the evaporator system, with most collecting in the drop tank, where they will remain until eventual salt heel removal. For each 6,000 kg of sodium oxalate in the drop tank, about 189,000 l of Saltstone feed would eventually be produced. Overall, except for corrosion-induced hydrogen, there were no significant process impacts that would forbid the use of oxalic acid in cleaning High Level Waste tanks. / MATHEMATICAL SCIENCES / M. Tech. (Chemical Engineering)
3

High level waste system impacts from acid dissolution of sludge

Ketusky, Edward Thomas 31 March 2008 (has links)
Currently at the Savannah River Site (SRS), there are fifteen single-shell, 3.6-million liter tanks containing High Level Waste. To close the tanks, the sludge must be removed. Mechanical methods have had limited success. Oxalic acid cleaning is now being considered as a new technology. This research uses sample results and chemical equilibrium software to develop a preferred flowsheet and evaluate the acceptability of the system impacts. Based on modeling and testing, between 246,000 to 511,000 l of 8 wt% oxalic acid were required to dissolve a 9,000 liter Purex sludge heel. For SRS H-Area modified sludge, 322,000 to 511,000 l were required. To restore the pH of the treatment tank slurries, approximately 140,000 to 190,000 l of 50 wt% NaOH or 260,000 to 340,000 l of supernate were required. When developing the flowsheet, there were two primary goals to minimize downstream impacts. The first was to ensure that the Resultant oxalate solids were transferred to DWPF, without being washed. The second was to transfer the remaining soluble sodium oxalates to the evaporator drop tank, so they do not transfer through or precipitate in the evaporator pot. Adiabatic modeling determined the maximum possible temperature to be 73.5°C and the maximum expected temperature to be 64.6°C. At one atmosphere and at 73.5°C, a maximum of 770 l of water vapor was generated, while at 64.6°C a maximum 254 l of carbon dioxide were generated. Although tank wall corrosion was not a concern, because of the large cooling coil surface area, the corrosion induced hydrogen generation rate was calculated to be as high as 10,250 l/hr. Since the minimum tank purge exhaust was assumed to be 5,600 l/hr, the corrosion induced hydrogen generation rate was identified as a potential concern. Excluding corrosion induced hydrogen, trending the behavior of the spiked constituents of concern, and considering conditions necessary for ignition, energetic compounds were shown not to represent an increased risk Based on modeling, about 56,800 l of Resultant oxalates could be added to a washed sludge batch with minimal impact on the number of additional glass canisters produced. For each sludge batch, with 1 to 3 heel dissolutions, about 60,000 kg of sodium oxalate entered the evaporator system, with most collecting in the drop tank, where they will remain until eventual salt heel removal. For each 6,000 kg of sodium oxalate in the drop tank, about 189,000 l of Saltstone feed would eventually be produced. Overall, except for corrosion-induced hydrogen, there were no significant process impacts that would forbid the use of oxalic acid in cleaning High Level Waste tanks. / MATHEMATICAL SCIENCES / M. Tech. (Chemical Engineering)
4

Corrosion interactions between stainless steel and borosilicate glasses

Mohanty, Chandi Prasad January 2022 (has links)
No description available.
5

Coupling source term, mineral reactivity and flow in radionuclide transport

Iwalewa, Tajudeen January 2017 (has links)
The focus of this work is to investigate the dissolution of MW25, a non-radioactive simulant of UK high-level nuclear waste borosilicate glass, and to predict its performance in the near field of a geological repository. A single-pass flow-through (SPFT) experimental system was used to measure the forward dissolution rates of MW25. Experiments were conducted in two parts. Experiment Part 1 considers the dissolution of the waste glass in deionised water at 40 and 90 oC and circum-neutral pH. Experiment Part 2 considers the dissolution of the waste glass in simulant groundwaters, with similar compositions to groundwaters of Callovo-Oxfordian clay (lower-strength sedimentary rock (LSSR)) and Borrowdale Volcanic Group rocks (higher-strength rock (HSR)), at 40 oC and pH 7. The forward dissolution rate measured in deionised water was found to be approximately one order of magnitude higher at 90 oC than at 40 oC. A similar release was observed for Si, Mg and Al at 40 oC and 90 oC, whereas the B, Cs, Na, Li and Mo showed an order of magnitude increase when the temperature was increased from 40 to 90 oC for low q/S values. The activation energy (Ea) of the reactions shows that the dissolution process is a surface phenomenon. At 90 oC the net effect of the processes governing MW25 dissolution led to the preferential release of boron and alkali metals relative to the release of Si during the transient dissolution stage, accompanied by an increase in the concentration of silicic acid. This suggests that the solution activity of silicic acid at a higher temperature has a weak influence on the release of the mobile elements. The forward dissolution rate measured in LSSR simulant groundwater was found to be slightly higher than that measured in HSR simulant groundwater. The dissolution behaviour of MW25 in both groundwaters is consistent with its behaviour in deionised water at 40 oC, with the dissolution rates of elements increasing as flow rates were increased. However, forward dissolution rates measured in the simulant groundwaters were lower than the forward dissolution rates measured in deionised water under these experimental conditions. This is attributable to the interaction of the components of the simulant groundwaters with the glass, as revealed by post-reaction surface analyses, and a consequential lower alkalinity of the leachates collected in the experiments with simulant groundwater than in deionised water. Reactive chemical transport simulations of waste glass dissolution and radionuclide release in a hypothetical near field were conducted over a time span of a million years with GoldSim. The results showed that enclosing the waste glass in a steel canister covered by a copper canister and emplacing the waste package in a granite host rock is optimal for the long-term isolation of the radionuclides. The waste glass was found to play a significant role in the overall performance of the near field. This study features a new method for estimating the surface area of reacted glass powder more accurately than the geometric surface area estimate, which is the preferred standard method among researchers.

Page generated in 0.0941 seconds