• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Frictional studies and high strain rate testing of wood under refining conditions

Svensson, Birgitta January 2007 (has links)
When producing thermomechanical pulps (TMP), wood chips and fiber material are loaded mechanically in a disc-refiner to separate the fibers and to make them flexible. In the process, much of the energy supplied is transferred to the fiber material through cyclic compression, shear and friction processes. Therefore, compression and friction characteristics are needed in order to gain a better grasp of the forces acting during refining. To this end, in this thesis, the compressive and frictional behaviors of wood were investigated under simulated chip refining conditions (i.e., hot saturated steam, high strain rate compression, and high sliding speed). Two new, custom-designed, experimental setups were developed and used. The equipment used for compression testing was based on the split Hopkinson pressure bar (SHPB) technique and the friction tester was a pin-on-disc type of tribotester (wear rig). Both pieces of equipment allow a testing environment of hot saturated steam.   In the wood–steel friction investigation, the influence of the steam temperature (100-170°C) was of primary interest. The wood species chosen for the friction tests were spruce (Picea abies), pine (Pinus sylvestris, Pinus radiata), and birch (Betula verrucosa). When performing measurements in the lower-temperature region (100-130°C), the friction coefficients registered for the softwoods were generally low and surface properties such as lubrica­tion were suggested to have a great influence on the results; however, in the higher-tempera­ture region (~130 -170°C), the friction coefficients of all investigated wood species were probably determined by bulk properties to a much greater extent. When most of the wood extractives had been removed from the specimens, testing results revealed distinct peaks in friction at similar temperatures, as the internal friction of the different wood species are known to have their maxima at ~110–130°C. One suggested explanation of these friction peaks is that reduced lubrication enabled energy to dissipate into the bulk material, causing particularly high friction at the temperature at which internal damping of the material was greatest. During the friction measurements in the higher-temperature region, the specimens of the different wood species also started to lose fibers (i.e., produce wear debris) at different characteristic temperatures, as indicated by peaks in the coefficient of friction. In refining, the generally lower shives content of pine TMP than of spruce TMP could partly be explained by a lower wear initiation temperature in the pine species.   Wood stiffness is known to decrease with temperature, when measured at low strain rates. The results presented in this thesis can confirm a similar behavior for high strain rate compression. The compressive strain registered during impulsive loading (using a modified split Hopkinson equipment) increased with temperature; because strain rate also increased with temperature. Accordingly, the strain rates should determine the strain magnitudes also in a refiner, since the impulsive loads in a refiner are of similar type. Larger strains would thus be achieved when refining at high temperatures. The results achieved in the compression tests were also considered in relation to refining parameters such as plate clearance and refining intensity, parameters that could be discussed in light of the stress–strain relations derived from the high strain rate measurements. Trials recorded using high-speed photography demonstrated that the wood relaxation was very small in the investigated time frame ~6 ms. As well, in TMP refining the wood material has little time to relax, i.e., ~0.04–0.5 ms in a large single disc refiner. The results presented here are therefore more suitable for comparison with the impulsive loads arising in a refiner than are the results of any earlier study. It can therefore be concluded that the modified SHPB testing technique combined with high-speed photography is well suited for studying the dynamic behavior of wood under conditions like those prevalent in a TMP system.
2

Traumatic brain injury: modeling and simulation of the brain at large deformation

Prabhu, Raj 06 August 2011 (has links)
The brain is a complex organ and its response to the mechanical loads at all strain rates has been nonlinear and inelastic in nature. Split-Hopkinson Pressure Bar (SHPB) high strain rate compressive tests conducted on porcine brain samples showed a strain rate dependent inelastic mechanical behavior. Finite Element (FE) modeling of the SHPB setup in ABAQUS/Explicit, using a specific constitutive model (MSU TP Ver. 1.1) for the brain, showed non-uniform stress state during tissue deformation. Song et al.’s assertion of using annular samples for negating inertial effects was also tested. FE simulation results showed that the use of cylindrical or annular did not mitigate the initial hardening. Further uniaxial stress state was not maintained is either case. Experimental studies on hydration effects of the porcine brain on its mechanical response revealed two different phenomenological trends. The wet brain (~80% water wt. /wt.) showed strain rate dependency along with two unique mechanical behavior patterns at quasi-static and high strain rates. The dry brain’s (~0% water wt. /wt.) response was akin to the response of metals. The dry brain’s response also observed to be strain rate insensitivity in its elastic modulus and yield stress variations. Uncertainty analysis of the wet brain high strain rate data revealed large uncertainty bands for the sample-to-sample random variations. This large uncertainty in the brain material should be taken into in the FE modeling and design stages. FE simulations of blast loads to the human head showed that Pressure played a dominant role in causing blast-related Traumatic Brain Injury (bTBI). Further, the analysis of shock waves exposed the deleterious effect of the 3-Dimensional geometry of the skull in pinning the location of bTBI. The effects of peak negative Pressure at injury sites have been attributed to bTBI pathologies such as Diffuse Axonal Injury (DAI), subdural hemorrhage and cerebral contusion.
3

Plastic Deformation and Ductile Fracture of 2024-T351 Aluminum under Various Loading Conditions

Seidt, Jeremy Daniel 23 August 2010 (has links)
No description available.
4

Challenges and signal processing of high strain rate mechanical testing

Lamdini, Barae 13 May 2022 (has links)
Dynamic testing provides valuable insight into the behavior of materials undergoing fast deformation. During Split-Hopkinson Pressure Bar testing, stress waves are measured using strain gauges as voltage variations that are usually very small. Therefore, an amplifier is required to amplify the data and analyze it. One of the few available amplifiers designed for this purpose is provided by Vishay Micro-Measurements which limits the user’s options when it comes to research or industry. Among the challenges of implementing the Hopkinson technology in the industry are the size and cost of the amplifier. In this work, we propose a novel design of a signal conditioning amplifier that provides the following functionalities: voltage excitation for strain gauges, wide gain range (1-1000), signal balancing, shunting, and filtering. The main objective is to make a smaller and cheaper amplifier that provides equivalent or better performance allowing larger application of the Hopkinson technology in the industry.

Page generated in 0.0923 seconds