• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 3
  • 1
  • Tagged with
  • 13
  • 13
  • 13
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Thermodynamics of aqueous electrolytes and hydrogen-bonded non-electrolytes over a wide range of temperature and pressure : the aqueous trivalent lanthanide cations and the methanol-water system /

Xiao, Caibin, January 1997 (has links)
Thesis (Ph. D.) --Memorial University of Newfoundland, 1997. / Restricted until November 1998. Bibliography: leaves 264-281.
12

Reaction kinetics and dynamic interfacial phenomena in liquid metal-slag systems

Rhamdhani, Muhammad Akbar. Brooks, Geoffrey January 2005 (has links)
Thesis (Ph.D.)--McMaster University, 2005. / Supervisor: Geoffrey Brooks and Kenneth Coley. Includes bibliographical references (p. 152-164).
13

Surface Modifications of Steels to Improve Corrosion Resistance in Sulfidizing-Oxidizing Environments

Behrani, Vikas 26 September 2007 (has links)
Industrial and power generation processes employ units like boilers and gasifiers to burn sulfur containing fuels to produce steam and syn gas (H2 and CO), which can generate electricity using turbines and fuel cells. These units often operate under environments containing gases such as H2S, SO2, O2 etc, which can attack the metallic structure and impose serious problems of corrosion. Corrosion control in high temperature sulfur bearing environments is a challenging problem requiring information on local gaseous species at the surface of alloy and mechanisms of degradation in these environments. Coatings have proved to be a better alternative for improving corrosion resistance without compromising the bulk mechanical properties. Changes in process conditions may result in thermal and/or environment cycling between oxidizing and sulfidizing environments at the alloy surface, which can damage the protective scale formed on the alloy surface, leading to increase in corrosion rates. Objective of this study was to understand the effect of fluctuating environments on corrosion kinetics of carbon steels and develop diffusion based coatings to mitigate the high temperatures corrosion under these conditions. More specifically, the focus was : (1) to characterize the local gaseous environments at the surface of alloys in boilers; (2) optimizing diffusion coatings parameters for carbon steel; (3)understand the underlying failure mechanisms in cyclic environments; (4) to improve aluminide coating behavior by co-deposition of reactive elements such as Yttrium and Hafnium; (5) to formulate a plausible mechanism of coating growth and effects of alloying elements on corrosion; and (6) to understand the spallation behavior of scale by measuring stresses in the scales. The understanding of coating mechanism and effects of fluctuating gaseous environments provides information for designing materials with more reliable performance. The study also investigates the mechanism behind the effect of REs on scale adhesion and sulfidation behavior. Thus, the present work will have a broad impact on the field of materials and coatings selection for high temperature industrial environments such as boilers and gasifiers, and provides information on RE-modified aluminized coatings on carbon steel as an alternative for the use of bulk superalloys under high temperature sulfur bearing environments.

Page generated in 0.1185 seconds