• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Propriedades mecânicas de fadiga de baixo ciclo à temperatura de 300ºC do aço inoxidável austenítico do sistema Fe-Cr-Mn-N / Low cycle fatigue test at high temperature of an Cr-Mn-N austenitic stainless steel

Oliveira, Ana Cláudia Costa de 11 May 2001 (has links)
Os colares das sondas de prospecção petrolíferas são fabricadas de aço inoxidável austenítico devido as suas características eletromagnéticas e de corrosão. Normalmente, a temperatura de serviço é de aproximadamente 300ºC, meio aquoso e a sonda é submetida a carregamentos cíclicos. Várias foram as tentativas de desenvolvimento de um aço que atendesse as necessidades de serviço destes colares. Neste trabalho foram determinadas as propriedades mecânicas de tração e de fadiga de baixo ciclo de um aço inoxidável austenítico do sistema Fe-Mn-Cr-N, quando ensaiado mecanicamente nas temperaturas ambiente e à 300ºC. Foi observado que os valores dos limites de escoamento e de resistência e o alongamento diminuem significativamente quando a temperatura é elevada para 300ºC. Como conseqüência destas alterações, ocorreu uma diminuição da vida em fadiga. A comparação entre as curvas tensão-deformação monotônica e cíclica mostrou que este material, ensaiado à 300ºC e nas amplitudes de deformações estudadas, apresenta amolecimento cíclico. A expressão encontrada para a relação deformação-vida é dada por &#916&#949t/2=0,0054 (2Nf)-0,064 + 0,438 (2Nf)-0,595 com ponto de transição em 2Nt = 9,5 x 103. Quanto aos métodos estimativos das propriedades mecânicas de fadiga, obtidos a partir das propriedades mecânicas de tração, foi verificado que o Método da Inclinação Universal Modificado se aproxima mais da curva experimental obtida neste trabalho. A análise fratográfica mostrou a presença de estrias no estágio II de propagação de trinca. / In this work the monotonic and low cycle fatigue mechanical properties of an Cr-Mn-N austenitic stainless steel, used to produce drill collars used for deep drilling in offshore industry, were evaluated. The low cycle fatigue testing was carried out according to the ASTM E606 standard, under strain control and R = - 1, at temperature of 300°C, which is the temperature that the drill collar reaches in service. It was observed that the yield and the ultimate tensile strength and the elongation decreased sharply with increasing temperature. As a consequence, in both high and low cycle regions, the fatigue life decreased with increasing temperature. The comparison between the stress - strain monotonic and cyclic curves, showed that this material exhibited cyclic softening for the applied strain amplitudes. The correlation between strain and number of cycles to failure was can be given by &#916&#949t/2 = 0,0054 (2Nf)-0,064 + 0,438 (2Nf)-0,595 with transition in 2Nt = 9,5x103 reverses. The experimental results were compared with some models used to predict the fatigue life based on the tensile monotonic properties. The Modified Universal Shopes a better fitting with the experimental data. The fractographic analysis showed the presence of stage II striations.
2

Propriedades mecânicas de fadiga de baixo ciclo à temperatura de 300ºC do aço inoxidável austenítico do sistema Fe-Cr-Mn-N / Low cycle fatigue test at high temperature of an Cr-Mn-N austenitic stainless steel

Ana Cláudia Costa de Oliveira 11 May 2001 (has links)
Os colares das sondas de prospecção petrolíferas são fabricadas de aço inoxidável austenítico devido as suas características eletromagnéticas e de corrosão. Normalmente, a temperatura de serviço é de aproximadamente 300ºC, meio aquoso e a sonda é submetida a carregamentos cíclicos. Várias foram as tentativas de desenvolvimento de um aço que atendesse as necessidades de serviço destes colares. Neste trabalho foram determinadas as propriedades mecânicas de tração e de fadiga de baixo ciclo de um aço inoxidável austenítico do sistema Fe-Mn-Cr-N, quando ensaiado mecanicamente nas temperaturas ambiente e à 300ºC. Foi observado que os valores dos limites de escoamento e de resistência e o alongamento diminuem significativamente quando a temperatura é elevada para 300ºC. Como conseqüência destas alterações, ocorreu uma diminuição da vida em fadiga. A comparação entre as curvas tensão-deformação monotônica e cíclica mostrou que este material, ensaiado à 300ºC e nas amplitudes de deformações estudadas, apresenta amolecimento cíclico. A expressão encontrada para a relação deformação-vida é dada por &#916&#949t/2=0,0054 (2Nf)-0,064 + 0,438 (2Nf)-0,595 com ponto de transição em 2Nt = 9,5 x 103. Quanto aos métodos estimativos das propriedades mecânicas de fadiga, obtidos a partir das propriedades mecânicas de tração, foi verificado que o Método da Inclinação Universal Modificado se aproxima mais da curva experimental obtida neste trabalho. A análise fratográfica mostrou a presença de estrias no estágio II de propagação de trinca. / In this work the monotonic and low cycle fatigue mechanical properties of an Cr-Mn-N austenitic stainless steel, used to produce drill collars used for deep drilling in offshore industry, were evaluated. The low cycle fatigue testing was carried out according to the ASTM E606 standard, under strain control and R = - 1, at temperature of 300°C, which is the temperature that the drill collar reaches in service. It was observed that the yield and the ultimate tensile strength and the elongation decreased sharply with increasing temperature. As a consequence, in both high and low cycle regions, the fatigue life decreased with increasing temperature. The comparison between the stress - strain monotonic and cyclic curves, showed that this material exhibited cyclic softening for the applied strain amplitudes. The correlation between strain and number of cycles to failure was can be given by &#916&#949t/2 = 0,0054 (2Nf)-0,064 + 0,438 (2Nf)-0,595 with transition in 2Nt = 9,5x103 reverses. The experimental results were compared with some models used to predict the fatigue life based on the tensile monotonic properties. The Modified Universal Shopes a better fitting with the experimental data. The fractographic analysis showed the presence of stage II striations.
3

DEVELOPMENT OF A UNIQUE EXPERIMENTAL FACILITY TO CHARACTERIZE THE FATIGUE AND EROSION BEHAVIOR OF CERAMIC MATRIX COMPOSITES UNDER TURBINE ENGINE CONDITIONS

Panakarajupally, Ragavendra Prasad January 2020 (has links)
No description available.
4

Investigation of the influence of thermally induced stress gradients on service life of nickel-base superalloys

Thiele, Marcus 28 February 2023 (has links)
Um die Leistung und Lebensdauer von energietechnischen Komponenten weiter zu steigern, sind höhere Leistungen, Leistungsdichten sowie Prozesswirkungsgrade zentrale Bestandteile künftiger Entwicklungen. Mit steigernden Leistungsdichten erhöhen sich auch stetig die Belastungen der einzelnen Komponenten. Zusammen mit neuen Werkstoffen und technologischem Fortschritt, wie beispielsweise verbesserten Kühltechnologien oder strömungstechnischen Optimierungen ermöglicht auch eine verbesserte Kenntnis der Belastungsbedingungen und des Schädigungsverhaltens höhere Leistungen und Leistungsdichten. Aktuelle Gasturbinen und oft auch Kraftwerkskomponenten unterliegen zusätzlich zu den mechanischen und zeitlich variablen thermischen Beanspruchungen auch großen örtlichen thermischen Gradienten, die die Lebensdauer der Komponenten stark beeinflussen. Diese thermischen Gradienten induzieren zum einen zusätzliche Beanspruchungen und die örtlich variablen Temperaturfelder führen zum anderen zu stark variierenden Werkstofffestigkeiten. In dieser Arbeit wird ein Prüfstand zur realistischen Prüfung eines typischen Gasturbinenschaufelmaterials Mar-M247 entwickelt und mit diesem eine systematische experimentelle Untersuchung des Einflusses thermischer Gradienten auf die niederzyklische Ermüdungsfestigkeit unter erhöhten Temperaturen durchgeführt. Im weiteren Teil der Arbeit wird ein visko-elasto-plastisches Materialmodell weiterentwickelt, um die lokal unsymmetrische Beanspruchung der Proben unter zyklischer Last realistisch abbilden zu können. Mit Hilfe von Experimenten aus der Literatur werden dabei zunächst die Grenzen und Möglichkeiten des Modells diskutiert, um es dann auf den konkreten Werkstoff anzupassen. Der wesentliche Vorteil des entwickelten Modells liegt in der verbesserten Beschreibung des zyklischen Kriechens und zyklischen Relaxierens (Ratcheting) insbesondere unter einachsiger Beanspruchung und in der nachträglichen Anpassungsmöglichkeit des spezifischen Ratchetingterms nach der Anpassung aller anderen Materialparameter. Die Analyse der experimentell ermittelten Lebensdauern erfolgt sowohl mit ingenieurmäßigen Methoden basierend auf der spannungsabhängigen Lebensdauerbeschreibung nach Basquinund Wöhler als auch mittels eines lokalen bruchmechanischen Ansatzes, der es ermöglicht,sowohl die Rissinitiierung als auch den Rissfortschritt unter variabler Temperatur und kombinierter Kriech- und Ermüdungsbeanspruchung zu beschreiben. Das Material- und Lebensdauermodell werden zusammen im letzten Teil der Arbeit eingesetzt, um das Verformungs- und Lebensdauerverhalten der untersuchten Proben zu berechnenund es kann gezeigt werden, dass sich die Versuche mit sehr guter Qualität wiedergeben lassen.:Versicherung i Abstract iii Kurzfassung v List of abbreviations and symbols xi 1 Introduction 1 2 Objective 5 3 State of the art 7 3.1 Thermal and mechanical loading of gas turbine components . . . . . . . . . . 7 3.2 Material characterisation of nickel-based superalloys . . . . . . . . . . . . . . 9 3.3 Deformation modelling based on constitutive material laws . . . . . . . . . . 13 3.3.1 Ramberg-Osgood material law . . . . . . . . . . . . . . . . . . . . . . 13 3.3.2 Strain and stress tensor . . . . . . . . . . . . . . . . . . . . . . . . . . 14 3.3.3 Thermodynamic principles . . . . . . . . . . . . . . . . . . . . . . . . 14 3.4 Elasto-visco-plastic material models . . . . . . . . . . . . . . . . . . . . . . . 15 3.4.1 Isotropic hardening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.4.2 Kinematic hardening . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 3.4.3 Kinematic hardening for improved simulation of ratcheting . . . . . . 18 3.4.4 Viscosity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21 3.5 Failure at elevated temperatures . . . . . . . . . . . . . . . . . . . . . . . . . 22 3.5.1 Fundamental fatigue life models . . . . . . . . . . . . . . . . . . . . . 24 3.5.2 Creep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 3.5.3 Crack growth models for fatigue loading . . . . . . . . . . . . . . . . . 28 3.5.4 Creep crack growth based on C(t) and C ∗ . . . . . . . . . . . . . . . . 33 3.5.5 Temperature dependency and normalization methods . . . . . . . . . 35 3.5.6 Lifetime under temperature variation . . . . . . . . . . . . . . . . . . . 37 3.5.7 Influence of mean stresses on lifetime . . . . . . . . . . . . . . . . . . . 38 3.5.8 Influence of oxidation on failure at elevated temperatures . . . . . . . 42 3.5.9 Constitutive damage and crack growth models . . . . . . . . . . . . . 45 3.6 Experimental methods for the generation of large homogeneously distributed heat flux densities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.6.1 Resistance heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.6.2 Inductive heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 3.6.3 Convective heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 3.6.4 Laser based heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.6.5 Radiation heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 3.7 Conclusion on the state of the art . . . . . . . . . . . . . . . . . . . . . . . . . 56 4 Development of a test system for cyclic fatigue tests under homogeneous surface temperature conditions 59 4.1 Boundary conditions for the development . . . . . . . . . . . . . . . . . . . . 59 4.2 Concept for a test system with a new highly focusing heating . . . . . . . . . 60 4.2.1 Simulation of heat fluxes of different furnace geometries by ray-tracing 60 4.3 Definition of reflection and transmission coefficient . . . . . . . . . . . . . . . 64 4.3.1 Simulation of the radiation behaviour for the furnace concepts . . . . 66 4.4 Analytical calculation of heat transfer inside the hollow specimen . . . . . . . 71 4.5 Finite element calculation of temperature distribution in the specimen wall . 73 4.6 Design and evaluation of the specimen internal cooling system . . . . . . . . . 75 4.6.1 Installation of heating and development of the load train . . . . . . . 81 5 Experimental investigation 85 5.1 Measurement of surface temperatures and thermal gradients . . . . . . . . . . 87 5.1.1 Measurement of surface temperature . . . . . . . . . . . . . . . . . . . 87 5.1.2 Axial surface temperature distribution . . . . . . . . . . . . . . . . . . 90 5.1.3 Measurement of thermal gradients across specimen wall . . . . . . . . 92 5.2 Results of isothermal ratcheting tests . . . . . . . . . . . . . . . . . . . . . . . 96 5.3 Deformation behaviour of cyclic tests with superimposed thermal gradients . 98 5.3.1 Variation of mean strain and mean stress . . . . . . . . . . . . . . . . 98 5.4 Termination criteria for the tests . . . . . . . . . . . . . . . . . . . . . . . . . 100 5.4.1 Measurement of modulus of elasticity . . . . . . . . . . . . . . . . . . 101 5.5 Low cycle fatigue life of Mar-M247 with and without superimposed thermal gradient . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 5.6 Results of hollow cylindrical specimen testing with thermal gradients . . . . . 108 6 Microstructural investigation 113 7 Deformation modeling with improved ratcheting simulation based on small scale strain theory 123 7.1 Modeling of ratcheting behaviour of Mar-M247 . . . . . . . . . . . . . . . . 123 7.1.1 Improvement of uniaxial ratcheting description for the Armstrong- Frederick-model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124 7.1.2 Evaluation of the proposed model for multiaxiality . . . . . . . . . . . 129 7.2 Application of the deformation model on Mar-M247 . . . . . . . . . . . . . 132 8 Lifetime calculation of the nickel-base-superalloy Mar-M247 based on engineering and crack growth methods 139 8.1 Modification of the Krämer crack growth model . . . . . . . . . . . . . . . . 139 8.2 Choice of basic variable for the fatigue crack growth and crack initiation . . . 140 8.3 Oxidation based crack growth model . . . . . . . . . . . . . . . . . . . . . . . 142 8.4 Creep crack growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148 8.5 Creep . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 149 8.6 Fatigue life . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152 8.6.1 Extension of the Paris crack growth model based on intrinsic defect size152 8.6.2 Crack length independent formulation of J-integral . . . . . . . . . . . 154 8.7 Combined model for comprehensive description of the crack-initiation and -growth . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156 8.7.1 Comparison to crack growth experiments . . . . . . . . . . . . . . . . 161 8.7.2 Comparison to fatigue experiments . . . . . . . . . . . . . . . . . . . . 164 9 Application of material and crack growth model to the experiments with superimposed thermal gradient 167 9.1 Geometry function for the hollow specimen investigated . . . . . . . . . . . . 167 9.2 Application of the crack growth model on non-isothermal tests . . . . . . . . 170 9.2.1 Calculation of the stress strain field of hollow cylindrical specimen subjected to thermally induced stress gradients with the elasto-visco- plastic model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172 9.2.2 Calculated crack growth behaviour under locally non-isothermal con- ditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176 10 Conclusion and outlook 181 Bibliography 185

Page generated in 0.071 seconds