• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • 1
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Prescription to Improve Thermoelectric Efficiency

Meka, Shiv Akarsh 2010 May 1900 (has links)
In this work, patterns in the behavior of different classes and types of thermoelectric materials are observed, and an alchemy that could help engineer a highly efficient thermoelectric is proposed. A method based on cross-correlation of Seebeck waveforms is also presented in order to capture physics of magnetic transition. The method is used to compute Curie temperature of LaCoO3 with an accuracy of 10K. In total, over 26 systems are analyzed, and 19 presented: Chalcogenides (PbSe, PbTe, Sb2Te3, Ag2Se), Skutterudites and Clathrates (CoSb3, SrFe4Sb12, Cd (CN)2, CdC, Ba8Ga16Si30*), Perovskites (SrTiO3, BaTiO3, LaCoO3, CaSiO3, Ce3InN*, YCoO3*), Half-Heuslers (ZrNiSn, NbFeSb, LiAlSi, CoSbTi, ScPtSb*, CaMgSi*), and an assorted class of thermoelectric materials (FeSi, FeSi2, ZnO, Ag QDSL*). Relaxation time is estimated from experimental conductance curve fits. A maximum upper bound of zT is evaluated for systems that have no experimental backing. In general, thermoelectric parameters (power factor, Seebeck coefficient and zT) are estimated for the aforementioned crystal structures. Strongly correlated systems are treated using LDAU and GGAU approximations. LDA/GGA/L(S)DA+U/GGA+U approach specific errors have also been highlighted. Densities of experimental results are estimated.
2

High Figure of Merit Lead Selenide Doped with Indium and Aluminum for Use in Thermoelectric Waste Heat Recovery Applications at Intermediate Temperatures

Evola, Eric G. 25 June 2012 (has links)
No description available.

Page generated in 0.0405 seconds