• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

SYNERGISTIC ENHANCEMENT OF THERMALLY TRIGGERED CHEMOTHERAPY FOR LIVER CANCER BY HIFU: EVIDENCE FROM in vitro AND in vivo STUDIES

January 2017 (has links)
acase@tulane.edu / Introduction: High-Intensity Focused Ultrasound (HIFU) is the only noninvasive method available today for thermal ablation of tumors. HIFU-induced rapid heating and mechanical disruption of tissue, not only has a direct destructive effect on tumors, but also provides a noninvasive way for targeted release of chemotherapeutic drugs from drug delivery vehicles such as temperature sensitive liposomes (SfTSLs). The objective of this work was to evaluate the synergistic treatment of Sorafenib-loaded TSLs (SfTSLs) and HIFU via in vitro analysis of cell viability and proliferation using an aggressive human liver cancer cell line and corresponding in vivo analysis of tumor growth and survival using a human xenograft mouse model. Materials and Methods: Liposomes were developed using 70% Dipalmitoylphosphatidylcholine, 20% L-a-Phosphatidylcholinehydrogenated Soy, and 10% Cholesterol using thin film hydration method to encapsulate Sorafenib at 10μM. Pellets of Hep3B human liver cancer cells (100 μl, 2.7 million cells/ml) were placed in a 0.2 ml thin-wall PCR tube to mimic dense tumor aggregation. Cell pellets were then inoculated with HIFU alone, SfTSLs, or exposed to a combination of HIFU and SfTSLs. The focused ultrasound signal was generated by a 1.1 MHz transducer with acoustic power ranging from 4.1 W to 12.0 W. Cell viability and proliferation experiments were conducted to measure cancer cell damage at 24, 48, 72, and 96 h post treatment via Annexin V/PI and WST-8 staining. In our in vivo study, 1.0×106 Hep3B cells in Matrigel were injected into left and right flanks of athymic nude mice. Tumors were allowed to grow to 8-10 mm size and then separated into the following treatment groups: HIFU alone, SfTSLs (50 μl) alone, SfTSLs + HIFU, and sham. Tumor sizes were measured by caliper every day and a diagnostic ultrasound system was used pre-treatment, 5 days, 14 days, and prior to sacrificing. Tumors were grouped and processed at 5 days, 14 days, or placed in a survival study to evaluate whether treatment facilitated longer lifespans. Tumor tissues were collected for H&E staining and evaluated by a blinded pathologist post euthanasia. Results and Discussion: Our in vitro data indicate that Hep3B cells exposed to both SfTSLs and HIFU have a significantly lower viability and proliferation rate than untreated cells or the cells treated with only SfTSLs or HIFU. According to our in vivo study, tumor growth in the SfTSLs + HIFU group was reduced as compared to Sham, SfTSLs only, or HIFU only groups. Conclusions: The results of our in vitro and in vivo experiments clearly indicate that chemotherapeutic drug-loaded SfTSLs and HIFU can be an effective therapy for locally aggressive liver cancer. This combination treatment leads to more cellular damage, reduction in tumor growth, and better survival. / 1 / Gray Halliburton
2

High intensity focused ultrasound (hifu) and ethanol induced tissue ablation: thermal lesion volume and temperature ex vivo

January 2013 (has links)
HIFU is the upcoming technology for noninvasive or minimally invasive tumor ablation via the localized acoustic energy deposition at the focal region within the tumor target. The presence of cavitation bubbles had been shown to improve the therapeutic effect of HIFU. In this study, we have investigated the effect of HIFU on temperature rise and cavitation bubble activity in ethanol-treated porcine liver and kidney tissues. We have also explored changes in the viability and proliferation rate of HepG2, SW1376, and FB1 cancer cells with their exposure to ethanol and HIFU. Tissues were submerged in 95% ethanol for five hours and then exposed to HIFU generated by a 1.1 MHz transducer or injected into focal spot before HIFU exposure. Cavitation events were measured by a passive cavitation detection technique for a range of acoustic power from 1.17 W to 20.52 W. The temperature around the focal zone was measured by type K or type E thermocouples embedded in the samples. In experiments with cancer cells, 2.7 millions cells were treated with concentration of ethanol at concentration 2%, 4%, 10%, 25%, and 50% and the cell were exposed to HIFU with power of 2.73 W, 8.72 W, and 12.0 W for 30 seconds. Our data show that the treatment of tissues with ethanol reduces the threshold power for inertial cavitation and increases the temperature rise. The exposure of cancer cells to various HIFU power only showed a higher number of viable cells 24 to 72 hours after HIFU exposure. On the other hand, both the viability and proliferation rate were significantly decreased in cells treated with ethanol and then HIFU at 8.7 W and 12.0 W even at ethanol concentration of 2 and 4 percent. In conclusion, the results of our study indicate that percutaneous ethanol injection (PEI) and HIFU have a synergistic effect on cancer cells ablation. / acase@tulane.edu
3

Fügen polymerer Packstoffe mit hochintensivem fokussierten Ultraschall

Oehm, Lukas 19 September 2017 (has links)
Das Verschließen besitzt als finaler qualitätsbestimmender Prozess besondere Bedeutung in der Verpackungstechnik. Da nach wie vor Kunststoff der am häufigsten eingesetzte Packstoff in der Lebensmittel- und Pharmaindustrie ist, sind insbesondere für das stoffschlüssige Fügen polymerer Packstoffe zahlreiche Verfahren etabliert. Alle bekannten Verfahren besitzen jedoch Einschränkungen bei deren Anwendung oder stellen spezifische Anforderungen an den Packstoff wie beispielsweise das Vorhandensein polarer oder elektrisch leitender Schichten im Verbundaufbau. Wissenschaftliche Untersuchungen haben das Ziel, die bestehenden Einschränkungen durch die Schaffung von Prozessverständnis und darauf aufbauender Optimierung der Verfahren und Prozesse zu verringern oder zu beseitigen. Alternativ dazu erscheint es sinnvoll, neue, bisher nicht in der Verarbeitungstechnik eingesetzte Verfahren auf deren Anwendbarkeit für verpackungstechnische Prozesse im Bereich des Fügens hin zu prüfen. Hochintensiver fokussierter Ultraschall (HIFU) ist ein solches interessantes Verfahren, welches bisher als nichtinvasive Methode zur Tumorbehandlung auf Basis von ultraschallinduzierter Gewebeerwärmung und -zerstörung im medizinisch-therapeutischen Bereich eingesetzt wird. Die prinzipielle Eignung des Verfahrens zur Erwärmung von Kunststoffen ist nur in wenigen wissenschaftlichen Veröffentlichungen beschrieben. Als Fügeverfahren zum Bauteilschweißen von mehreren Millimetern dicken Kunststoffplatten wurde das Prinzip in den 1970er Jahren erprobt. Eine industrielle Nutzung ist jedoch nicht bekannt und der publizierte Stand der Technik ist weit von den Anforderungen des modernen Verarbeitungsmaschinenbaus entfernt. Daraus ergibt sich die Motivation zur Schaffung einer Wissensbasis für dieses Fügeverfahren und die Abschätzung dessen Potential unter verarbeitungstechnischen Maßstäben. Dabei fließen physikalische Grundlagen zur Akustik und Erkenntnisse zu den Wirkzusammenhängen in der Medizin ebenso wie verpackungstechnische Grundlagen ein. Die Ergebnisse der Arbeit stellen die Grundlage für weiterführende Untersuchungen zum stoffschlüssigen Fügen polymerer Packstoffe mittels hochintensivem fokussierten Ultraschall dar.
4

Effect of blood flow on high intensity focused ultrasound therapy in an isolated, perfused liver model

Holroyd, David January 2015 (has links)
High intensity focused ultrasound (HIFU) is an emerging non-invasive thermal ablative modality that can be utilised for the treatment of solid organ tumours, including liver cancer. Acoustic cavitation is a phenomenon that can occur during HIFU and its presence can enhance heating rates. One major limitation of thermal ablative techniques in general, such as radiofrequency and microwave ablation, is the heat sink effect imparted by large vasculature. Thermal advection from blood flow in vessels ≥ 3 - 4 mm in diameter has been shown to significantly reduce heating rates and peak temperatures in the target tissue, potentially leading to treatment failure. With regards to HIFU therapy, a clearer understanding is required of the effects of blood flow on heating, cavitation and thermal tissue necrosis, which is the treatment endpoint in clinical thermal ablation. Therefore, the overall aim of this thesis project was to elucidate the effects of blood flow on HIFU-induced heating, cavitation and histological assessment of thermal ablation. A unique isolated, perfused porcine liver model was used in order to provide a relevant test bed, with physiological and anatomical characteristics similar to the in vivo human liver. The normothermic liver perfusion device used in all studies presented in this work can keep an organ alive in a functional state ex vivo for in excess of 72 hours. A further advantage of the liver perfusion device was that it allowed blood flow to be stopped completely and resumed rapidly, allowing studies to be conducted under zero flow conditions. A therapeutic HIFU system was used in order to deliver HIFU therapy to regions of hepatic parenchyma adjacent (≤ 3 mm) to large (≥ 5 mm) blood vessels or away from vasculature (≥ 1 cm) at either 1.06 MHz or at 3.18 MHz. Cavitation events during HIFU therapy were spatio-temporally monitored using a previously developed passive acoustic mapping (PAM) technique. The cavitation threshold at each frequency was determined through assessment of acoustic emissions acquired through PAM during HIFU exposure at a range of acoustic pressures. Real time thermal data during HIFU therapy were obtained using an implantable 400 μm thermocouple, aligned with the HIFU focus, in order to assess the effect of large vessel blood flow on peak tissue temperatures. Thermal data were obtained at 1.06 MHz, in the presence of acoustic cavitation and at 3.18 MHz, in the absence of cavitation, both in the presence and complete absence of blood flow. Finally, histological assessment of cell viability and cell death was performed in order to determine whether any heat sink effect could be overcome, with the achievement of complete tissue necrosis in treatment regions directly adjacent to large vasculature. This work demonstrated for the first time that in perfused, functional liver tissue, the presence of large vasculature and physiological blood flow does not significantly affect ablative HIFU therapy, both in terms of peak focal tissue temperatures attained and histological evidence of complete tissue necrosis. Therefore, HIFU may be superior to other ablative modalities in treating tumours in tissue regions adjacent to major vascular structures, but further work needs to be performed to correlate the experimental findings with clinical outcomes.

Page generated in 0.0728 seconds