• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Physiology of Potassium Nutrition in Cereals: Fluxes, Compartmentation, and Ionic Interactions

Szczerba, Mark 01 August 2008 (has links)
Potassium (K+) is an essential nutrient and the most abundant cation in plant cells. Plants possess two transport systems for K+ acquisition: a high-affinity system (HATS), operating at external K+ concentrations ([K+]ext) below 1 mM, and showing reduced transport activity in the presence of ammonium (NH4+); and, a low-affinity system (LATS), operating at [K+]ext above 1 mM, that is not affected by NH4+. K+ transport and compartmentation were investigated in barley (Hordeum vulgare L.) and rice (Oryza sativa L.) using the non-invasive technique of compartmental analysis by tracer efflux (CATE), to simultaneously determine unidirectional membrane fluxes, ion concentrations, and exchange characteristics in subcellular compartments. These studies revealed striking differences in unidirectional K+ fluxes between HATS and LATS. It was found that flux measurements, using traditional direct influx (DI) protocols, accurately represented HATS influx, but underestimated LATS influx by as much as seven-fold. In both barley and rice, LATS K+ fluxes were found to undergo rapid, futile cycling, with the ratio of efflux:influx 3 to 5 times greater, and the cytosolic exchange rate 2 to 3 times faster than under HATS. Based upon plasma-membrane electrical potential measurements, efflux was found to be active under LATS conditions. LATS-mediated conditions for K+ were found to provide relief from NH4+ toxicity in barley by immediately reducing NH4+ influx by more than 50%, and significantly reducing NH4+ futile cycling. Employing the K+ channel inhibitors cesium, lanthanum, and tetraethylammonium, NH4+ was shown to have both K+-sensitive and –insensitive influx pathways at high [NH4+]ext. Based on current models of flux energetics, the combined uptake of K+ and NH4+ was found to utilize 60% of root oxygen consumption. Barley and rice both showed signs of NH4+ toxicity at low [K+]ext, but rice recovered at much lower [K+]ext, suggesting a crucial role of K+ in the NH4+-tolerance of rice. These experiments address fundamental aspects of K+ fluxes, and help provide a physiological framework for future studies of K+ transport and mineral nutrition.
2

Physiology of Potassium Nutrition in Cereals: Fluxes, Compartmentation, and Ionic Interactions

Szczerba, Mark 01 August 2008 (has links)
Potassium (K+) is an essential nutrient and the most abundant cation in plant cells. Plants possess two transport systems for K+ acquisition: a high-affinity system (HATS), operating at external K+ concentrations ([K+]ext) below 1 mM, and showing reduced transport activity in the presence of ammonium (NH4+); and, a low-affinity system (LATS), operating at [K+]ext above 1 mM, that is not affected by NH4+. K+ transport and compartmentation were investigated in barley (Hordeum vulgare L.) and rice (Oryza sativa L.) using the non-invasive technique of compartmental analysis by tracer efflux (CATE), to simultaneously determine unidirectional membrane fluxes, ion concentrations, and exchange characteristics in subcellular compartments. These studies revealed striking differences in unidirectional K+ fluxes between HATS and LATS. It was found that flux measurements, using traditional direct influx (DI) protocols, accurately represented HATS influx, but underestimated LATS influx by as much as seven-fold. In both barley and rice, LATS K+ fluxes were found to undergo rapid, futile cycling, with the ratio of efflux:influx 3 to 5 times greater, and the cytosolic exchange rate 2 to 3 times faster than under HATS. Based upon plasma-membrane electrical potential measurements, efflux was found to be active under LATS conditions. LATS-mediated conditions for K+ were found to provide relief from NH4+ toxicity in barley by immediately reducing NH4+ influx by more than 50%, and significantly reducing NH4+ futile cycling. Employing the K+ channel inhibitors cesium, lanthanum, and tetraethylammonium, NH4+ was shown to have both K+-sensitive and –insensitive influx pathways at high [NH4+]ext. Based on current models of flux energetics, the combined uptake of K+ and NH4+ was found to utilize 60% of root oxygen consumption. Barley and rice both showed signs of NH4+ toxicity at low [K+]ext, but rice recovered at much lower [K+]ext, suggesting a crucial role of K+ in the NH4+-tolerance of rice. These experiments address fundamental aspects of K+ fluxes, and help provide a physiological framework for future studies of K+ transport and mineral nutrition.

Page generated in 0.3806 seconds