• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Optical characterization of high-[Kappa] dielectric structures

Price, James Martin, 1980- 23 August 2010 (has links)
Charge trapping dynamics in Si/SiO2/Hf(1-x)SixO2 and III-V film stack systems are characterized using spectroscopic ellipsometry (SE) and second harmonic generation (SHG). For the first time, discrete absorption features within the bandgap of the SiO2 interfacial layer are identified using SE, and their relation to both intrinsic and process-induced defects is proposed. Sensitivity of the absorption features to process conditions is demonstrated and evidence that these defects contribute to Vfb roll-off is presented. Defects in the Hf(1-x)SixO2 films are probed with fs laser-induced internal multi-photon photo-excitation (IMPE) and time dependent electrostatic field induced second harmonic (TD-EFISH) generation. For the as deposited HfO2 films, a unique TD-EFISH response is identified and explained by resonant two photon ionization of a specific point defect and subsequent tunneling of the photoelectrons to the Si substrate. Charge trapping kinetics for all Hf(1-x)SixO2 films are investigated. Two characteristic trap cross sections are identified and found to be insensitive to dielectric film and process conditions, and associated with a surface “harpooning” mechanism. EFISH from non-centrosymmetric III-V media, including GaAs and In0.53Ga0.47As, is also studied. The anisotropic and time dependent SHG response from different chemically treated In0.53Ga0.47As surfaces is clearly distinguishable and associated with a process-induced change in the surface depletion field. / text

Page generated in 0.0531 seconds