Spelling suggestions: "subject:"highorder MRFs"" "subject:"rightorder MRFs""
1 |
Knowledge-based image segmentation using sparse shape priors and high-order MRFs / Segmentation d’images avec des a priori de forme parcimonieux et des champs de Markov aléatoires d’ordre supérieurXiang, Bo 28 November 2013 (has links)
Nous présentons dans cette thèse une approche nouvelle de la segmentation d’images, avec des descripteurs a priori utilisant des champs de Markov d’ordre supérieur. Nous représentons le modèle de forme par un graphe de distribution de points qui décrit les informations a priori des invariants de pose grâce à des cliques L1 discrètes d’ordre supérieur. Chaque clique de triplet décrit les variations statistiques locales de forme par des mesures d’angle,ce qui assure l’invariance aux transformations globales (translation, rotation et échelle). L’apprentissage d’une structure de graphe discret d’ordre supérieur est réalisé grâce à l’apprentissage d’un champ de Markov aléatoire utilisant une décomposition duale, ce qui renforce son efficacité tout en préservant sa capacité à rendre compte des variations.Nous introduisons la connaissance a priori d’une manière innovante pour la segmentation basée sur un modèle. Le problème de la segmentation est ici traité par estimation statistique d’un maximum a posteriori (MAP). L’optimisation des paramètres de la modélisation- c’est à dire de la position des points de contrôle - est réalisée par le calcul d’une fonction d’énergie globale de champs de Markov (MRF). On combine ainsi les calculs statistiques régionaux et le suivi des frontières avec la connaissance a priori de la forme.Les descripteurs invariants sont estimés par des potentiels de Markov d’ordre 2, tandis que les caractéristiques régionales sont transposées dans un espace de caractéristiques et calculées grâce au théorème de la Divergence.De plus, nous proposons une nouvelle approche pour la segmentation conjointe de l’image et de sa modélisation ; cette méthode permet d’obtenir une segmentation plus fine lorsque la délimitation précise d’un objet est recherchée. Un modèle graphique combinant l’information a priori et les informations de pixel est développé pour réaliser l’unité des modules "top-down" et "bottom-up". La cohérence entre l’image et sa modélisation est assurée par une décomposition qui associe les parties du modèle avec la labellisation de chaque pixel.Les deux champs de Markov d’ordre supérieur considérés sont optimisés par les algorithmes de l’état de l’art. Les résultats prometteurs dans les domaines de la vision par ordinateur et de l’imagerie médicale montrent le potentiel de cette méthode appliquée à la segmentation. / In this thesis, we propose a novel framework for knowledge-based segmentation using high-order Markov Random Fields (MRFs). We represent the shape model as a point distribution graphical model which encodes pose invariant shape priors through L1 sparse higher order cliques. Each triplet clique encodes the local shape variation statistics on the angle measurements which inherit invariance to global transformations (i.e. translation,rotation and scale). A sparse higher-order graph structure is learned through MRF training using dual decomposition, producing boosting efficiency while preserving its ability to represent the shape variation.We incorporate the prior knowledge in a novel framework for model-based segmentation.We address the segmentation problem as a maximum a posteriori (MAP) estimation in a probabilistic framework. A global MRF energy function is defined to jointly combine regional statistics, boundary support as well as shape prior knowledge for estimating the optimal model parameters (i.e. the positions of the control points). The pose-invariant priors are encoded in second-order MRF potentials, while regional statistics acting on a derived image feature space can be exactly factorized using Divergence theorem. Furthermore, we propose a novel framework for joint model-pixel segmentation towardsa more refined segmentation when exact boundary delineation is of interest. Aunified model-based and pixel-driven integrated graphical model is developed to combine both top-down and bottom-up modules simultaneously. The consistency between the model and the image space is introduced by a model decomposition which associates the model parts with pixels labeling. Both of the considered higher-order MRFs are optimized efficiently using state-of the-art MRF optimization algorithms. Promising results on computer vision and medical image applications demonstrate the potential of the proposed segmentation methods.
|
Page generated in 0.0436 seconds