• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 5
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vliv plechů z amorfní oceli na prostupnost rušení transformátory / Influence of transformer lamination from amorphous steel on permeability disturbance by transformers

Konečný, Pavel January 2010 (has links)
Influence of transformer lamination from amorphous steel on permeability disturbance by transformer This diploma work is about difference between current materials and amorphous plates which are used as pivots of transformers. Samples are tested by frequence 50-2500 Hz. By using more suitable materials we avoid the unallowable electromagnetic interruption better and we get more positive continuance of the retroactivity on the net.
2

Analyse de la non-linéarité acoustique de contact pour l’ évaluation et le contrôle non destructif / Analysis of the contact acoustic nonlinearity for nondestructive evaluation

Blanloeuil, Philippe 04 October 2013 (has links)
Les effets non-linéaires produits par l'interaction entre une onde et une fissure fermée peuvent être un moyen potentiel pour la détection de ces fissures. Ce travail porte sur l'étude et l'analyse de la non-linéarité de contact générée par la propagation d'une onde à travers une fissure fermée. Notre approche repose sur la modélisation numérique par Eléments finis (EF) dont la résolution est effectuée dans le domaine temporel. La fissure est modélisée par une loi de contact unilatéral avec frottement de Coulomb. L'outil numérique mis en place est utilisé pour l'analyse de la méthode de génération d'harmoniques et sa relation avec la dynamique de contact. Le cas d'une interface de contact entre deux solides a permis d'estimer l'influence de l'état de contrainte sur le comportement non-linéaire, et a fait l'objet d'une validation expérimentale. La diffusion non-linéaire d'une fissure fermée orientée est ensuite obtenue en couplant la solution numérique à une méthode semi-analytique afin d'obtenir les diagrammes de directivité. Les mécanismes impliqués dans l'interaction onde - fissure sont mis en évidence. Ces résultats nous permettent ensuite d'appliquer la méthode du mixage d'ondes non-colinéaire, d'abord sur une interface de contact puis sur une fissure fermée. L'étude numérique et les premiers résultats expérimentaux démontrent le potentiel de la méthode en terme de détection, de caractérisation et d'imagerie. / The nonlinear effects produced by the interaction between a closed crack and an ultrasonic wave can be a good mean for the detection or thecharacterization of such cracks. This work is dedicated to the study and the analysis of the contact acoustic nonlinearity involved during the interaction of acoustic waves and closed cracks. Our approach is based on Finite Element (FE) modeling. The crack is modeled by unilateral contact with Coulomb's friction law, and numerical solutions are computed in the time domain. The numerical tool is used to analyze the method of higher harmonic generation and its relation with contact dynamics. First, the case of an interface between two solids in contact is considered, both numerically and experimentally, and it was shown that the nonlinear behavior depend on the state of stress. Then, nonlinear elastic scattering by a closed crack of various orientations was calculated. A hybrid model coupling FE and semi-analytical solutions was set up to compute the scattered field and to plot directivity diagrams. The nonlinear mechanisms involved in the interaction between a wave and a closed crack are highlighted. Using those results, the non-collinear mixing technique was applied for measuring the nonlinear response of a contact interface and a closed crack. The numerical results, as well as the first experimental results, are very promising for detecting, locating and imaging closed cracks.
3

Měření nelineárních vlastností reproduktorů / Measurement of Non-Linear Properties of Loudspeakers

Friml, Vilém January 2020 (has links)
This thesis deals with calculation of THD dependency on signal frequency and calculation of Rub & buzz distortion using MATLAB software. Thesis includes generation of signals suited for THD measurement, playback and recording using sound card and APx series 500 device. The APx device controlling and data acquisition by MATLAB is also addressed. Loudspeaker electric model is discussed for the use of Rub & buzz measurement.
4

Simulace momentové charakteristiky asynchronního stroje / Modeling of torque-speed characteristics of induction motor

Michalík, Marek January 2017 (has links)
This master thesis deals in first part with basic theory of an induction motor and principle of function. It also includes theory about higher harmonics of magnetic field and how asynchronous and synchronous torques are created. Various ways how to decrease effect of these torques are suggested. These findings are later applied in practical analytical calculation in second part, in which all parameters of motor are calculated from given dimensions of motor from technical documentation. This is done for basic and higher harmonics. After that a model of this motor was created in RMxprt program, which also calculated all parameters of this motor and created torque characteristic. This motor was also modelled in ANSYS Maxwell 2D. Additional simulations for finding out influence of harmonics on torque characteristic were also done in this software. Torque characteristic of motor was also practically measured in laboratory. All results were compared and evaluated.
5

Validation and application of advanced soil constitutive models in numerical modelling of soil and soil-structure interaction under seismic loading

Kowalczyk, Piotr Jozef 23 September 2020 (has links)
This thesis presents validation and application of advanced soil constitutive models in cases of seismic loading conditions. Firstly, results of three advanced soil constitutive models are compared with examples of shear stack experimental data for free field response in dry sand for shear and compression wave propagation. Higher harmonic generation in acceleration records, observed in experimental works, is shown to be possibly the result of soil nonlinearity and fast elastic unloading waves. This finding is shown to have high importance on structural response, real earthquake records and reliability of conventionally employed numerical tools. Finally, short study of free field response in saturated soil reveals similar findings on higher harmonic generation. Secondly, two advanced soil constitutive models are used, and their performance is assessed based on examples of experimental data on piles in dry sand in order to validate the ability of the constitutive models to simulate seismic soil-structure interaction. The validation includes various experimental configurations and input motions. The discussion on the results focuses on constitutive and numerical modelling aspects. Some improvements in the formulations of the models are suggested based on the detailed investigation. Finally, the application of one of the advanced soil constitutive models is shown in regard to temporary natural frequency wandering observed in structures subjected to earthquakes. Results show that pore pressure generated during seismic events causes changes in soil stiffness, thus affecting the natural frequency of the structure during and just after the seismic event. Parametric studies present how soil permeability, soil density, input motion or a type of structure may affect the structural natural frequency and time for its return to the initial value. In addition, a time history with an aftershock is analysed to investigate the difference in structural response during the earthquake and the aftershock.

Page generated in 0.064 seconds