Spelling suggestions: "subject:"hinge 2oment"" "subject:"hinge böjmoment""
1 |
Control Power Optimization using Artificial Intelligence for Forward Swept Wing and Hybrid Wing Body AircraftAdegbindin, Moustaine Kolawole Agnide 06 February 2017 (has links)
Many futuristic aircraft such as the Hybrid Wing Body have numerous control surfaces that can result in large hinge moments, high actuation power demands, and large actuator forces/moments. Also, there is no unique relationship between control inputs and the aircraft response. Distinct sets of control surface deflections may result in the same aircraft response, but with large differences in actuation power. An Artificial Neural Network and a Genetic Algorithm were used here for the control allocation optimization problem of a Hybrid Wing Body to minimize the Sum of Absolute Values of Hinge Moments for a 2.5-G pull-up maneuver. To test the versatility of the same optimization process for different aircraft configurations, the present work also investigates its application on the Forward Swept Wing aircraft. A method to improve the robustness of the process is also presented. Constraints on the load factor and longitudinal pitch rate were added to the optimization to preserve the trim constraints on the control deflections. Another method was developed using stability derivatives. This new method provided better results, and the computational time was reduced by two orders of magnitude. A hybrid scheme combining both methods was also developed to provide a real-time estimate of the optimum control deflection schedules to trim the airplane and minimize the actuation power for changing flight conditions (Mach number, altitude and load factor) in a pull-up maneuver. Finally, the stability derivatives method and the hybrid scheme were applied for an antisymmetric, steady roll maneuver. / Master of Science / Many futuristic aircraft such as the Hybrid Wing Body have numerous control surfaces that can result in large actuation power. An Artificial Neural Network and a Genetic Algorithm were used here to minimize the actuation power on the Hybrid Wing Body. To test the versatility of the same optimization process for different aircraft configurations, the present work also investigates its application on the Forward Swept Wing aircraft. A method to improve the robustness of the process is also presented. A completely different method was developed, and it provided better results with the computational time reduced by two orders of magnitude. A hybrid scheme combining both methods was also developed to provide a real-time estimate of the optimum control deflection schedules to trim the airplane and minimize the actuation power for changing flight conditions (Mach number, altitude and load factor) in a pull-up maneuver.
|
2 |
Control surfaces in confined spaces : the optimisation of trailing edge tabs to reduce control surface hinge momentsJaquet, Christopher Denis 03 1900 (has links)
Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2010. / ENGLISH ABSTRACT: This thesis describes the first project relating to the Control Surfaces in Confined Spaces (CoSICS) project
at Stellenbosch University. The aim of CoSICS project is to reduce the size of control surface actuators,
and this thesis considers the aileron system of commercial aircraft such as the Airbus A320 and A330.
Specifically the project aims to reduce the aileron hinge moment, as this will result in smaller actuators.
Possible methods are discussed where aerodynamic forces are used to reduce the aileron hinge moment
through the use of a wing-aileron-tab configuration. In order to examine the use of the configuration,
first order aerodynamic modelling is performed using two-dimensional thin-aerofoil theory, which is also
extended to a basic three-dimensional approximation.
To determine the maximum reduction in hinge moment several optimisations are performed where only
the tab chord length is varied, both tab and aileron chord lengths are varied, and finally the tab chord
length and aileron span are varied. The optimisation methods used, namely the gradient-based sequential
quadratic programming (SQP) and a real-encoded genetic algorithm (REGA) are discussed in detail and
include general implementations which are then applied to the problem. The optimisations performed are
dual-layered where optimal deflection angles are determined as well as the optimal geometry.
The results of the optimisation are tested using a roll manoeuvre in a specially developed Simulink simulation
environment for this purpose.
The study produces results where new hinge moment values are an order of magnitude smaller than those
of the old configuration, while maintaining suitable lift and rolling moment coefficients. The optimisation
and simulation infrastructure developed in this thesis provides a platform for higher-fidelity models and
components being developed in future work to provide higher fidelity results. / AFRIKAANSE OPSOMMING: Hierdie tesis beskryf die eerste projek in die Control Surfaces in Confined Spaces-projek1 (CoSICS-projek)
uitgevoer by die Universiteit Stellenbosch. Die doel van die COSICs-projek is om die grootte van beheervlak
aktueerders te minimeer en hierdie tesis handel oor die aileron stelsel van kommersiële vliegtuie
soos die Airbus A320 en A330. Die doel van hierdie tesisis om die skarnier draaimoment van die aileron
te minimeer deur aërodinamiese kragte in te span in ’n vlerk-aileron-hulpvlak konfigurasie. Eerste-orde
aërodinamiese modelle is afgelei met behulp van twee-dimensionele dunvlerkteorie en is gebruik om die
konfigurasie te analiseer. ’n Eerste orde drie-dimensionele benadering is ook ontwikkel.
Om die maksimum vermindering in die skarnier draaimoment te bepaal, is verskeie optimerings uitgevoer
waar eers die hulpvlak se koordlengte gevarieer word, daarna beide die aileron en hulp-vlak se
koordlengtes en laastens die hulp-vlak se koordlengte en wydte. Die twee optimerings metodes wat gebruik
is, nl. ’n sekwensiële kwadratiese programmerings (SKP) tegniek, en ’n reële getal-geënkodeerde
genetiese algoritme (RGGA), word bespreek en ontwikkel voor hulle toegepas word op die probleem.
Twee-vlak optimerings word uitgevoer waar beide die optimale defleksiehoeke en die optimale geometrie
bepaal word.
Die resultate van die optimering word daarna getoets deur middel van ’n rol maneuver wat uitgevoer word
in ’n Simulink simulasie omgewing wat daarvoor geskep is.
Hierdie studie lei tot goeie resultate met skarnier draaimoment waardes ’n ordegrootte kleiner as dié van
die vorige stelsel, terwyl goeie waardes van rol-moment en verheffingskrag koëffisiënte behou word. Die
optimering en simulasie infrastruktuur wat hier ontwikkel word verskaf ’n platform vir meer akkurate
modelle en komponente wat ontwikkel word in toekomstige projekte om meer akkurate resultate te lewer.
|
Page generated in 0.0643 seconds