Spelling suggestions: "subject:"hipergrafos"" "subject:"hipergrafo""
1 |
Algumas contribuições à aplicaçao da teoria dos hipergrafosRabuske, Marcia Aguiar January 1981 (has links)
Tese (doutorado) - Universidade Federal do Rio de Janeiro. Faculdade de Engenharia / Made available in DSpace on 2012-10-16T21:21:30Z (GMT). No. of bitstreams: 0
|
2 |
Resultados exatos e de estabilidade em colorações de hipergrafosContiero, Lucas de Oliveira January 2018 (has links)
A presente tese de doutorado trata de problemas de coloração de hipergrafos. Mais precisamente, nós trabalhamos com o chamado Problema de Erdos e Rothschild no caso de colorações arco- ris de hipergrafos. Nossas contribuições envolvem os hipergrafos plano de Fano (hipergrafo 3-uniforme com 7 v ertices e 7 hiperarestas onde todo par de v ertices e coberto) e K(k) +1 (hipergrafo obtido do grafo K+1 onde cada aresta recebe k 2 novos v ertices). Para F 2 fFano;K(k) +1g, encontramos o hipergrafo k-uniforme com o maior n umero de r-colorações de hiperarestas que não contêm cópia de F com a propriedade de que todas as suas hiperarestas têm cores distintas. Como ferramentas para tais demonstrações, obtivemos resultados mais precisos de estabilidade para K(k) +1 e outros hipergrafos ou famílias de hipergrafos, bem como um resultados de estabilidade para colorações para uma classe de hipergrafos lineares, que contém Fano e K(k)+1. Para os resultados de estabilidade para colorações utilizamos o Lema de Regularidade, introduzido por Szemeredi no contexto de grafos, e o Lema de Imersão, ambos considerados mais tarde para hipergrafos lineares por Kohayakawa, Nagle, Rodl e Schacht. / In this thesis we consider problems about colorings of hypergraphs. More precisely, we deal with the so-called Erd}os and Rothschild Problem in the case of rainbow colorings of hypergraphs. Our contributions involve the hypergraphs Fano plane (the 3-uniform hypergraph on 7 vertices and 7 hyperedges where every pair of vertices is covered) and K(k) `+1 (the hypergraph obtained from K`+1 where each edge is enlarged by k 2 new vertices). For F 2 fFano;K(k) `+1g, we obtained the k-uniform hypergraph with the largest number of r-colorings of hyperedgees not containing a copy of F with the property that all hyperedges are colored di erently. As a tool for such proofs, we obtained a sharper stability result for K(k) `+1 and other hypergraphs and families of hypergrahs. We also obtained a color stability result for a class of linear hypergraphs, which contains Fano and K(k) `+1. For these color stability result we used the Regularity Lemma, originally stated by Szemer edi for graphs, and the Embedding Lemma, both considered later for linear hypergraphs by Kohayakawa, Nagle, Rodl and Schacht
|
3 |
Problemas de coloração em teoria extremal de conjuntosContiero, Lucas de Oliveira January 2014 (has links)
Neste trabalho de mestrado tratamos de problemas de coloração em Teoria Extremal de Conjuntos. Para números inteiros positivos n, k, q e t, uma (q, t)-coloração de um hipergrafo k-uniforme H com n vértices é uma função que associa cada hiperaresta de H a uma cor em [q], onde dois elementos de mesma cor possuem intersecção de tamanho pelo menos t. Um resultado recente [1] informa qual é o hipergrafo que admite o maior número de (q, t)-colorações quando q {2, 3, 4} ou q ≥ 5 e k ≥ 2t - 1. No caso em que q ≥ 5 e k < 2t 1, este resultado determina propriedades que um hipergrafo que atinge o número máximo de colorações deve possuir, porém não identi ca os hipergrafos ótimos entre todos que satisfazem essas propriedades. A principal contribuição do nosso trabalho foi estudar uma conjectura proposta pelos autores daquele trabalho. Adaptando uma técnica clássica, demonstramos que essa conjectura é verdadeira em alguns casos. Uma outra contribuição deste trabalho foi a apresentação detalhada de demonstrações de resultados clássicos associados a este problema. / In this master's thesis we considered problems in Extremal Set Theory. For positive numbers n, k, q and t, we say that a (q, t)-coloring of an n-vertex k-uniform hypergraph H is a function such that each hyperedge from H is associated with a color in [q], where two hyperedges with the same color have at least t elements in common. A recent result [1] determined the set of hypergraphs allowing the maximum number of (q, t)-colorings when q {2, 3, 4}or when q ≥ 5 and k ≥ 2t . In the case q ≥ 5 and k < 2t - 1, that work found properties that a hypergraph with the maximum number of (q, t)-colorings satis es, but did not determine which hypergraphs are extremal. The main contribution of our work is to study a conjecture proposed by the authors of [1], which further restricts the class of possible extremal hipergraphs. Using a classical technique, we prove their conjecture for q 2 f5; 6g and restrict the class of possible extremal hipergraphs in the other cases. Another contribution of this work is the presentation of detailed proofs of the classical results related to this problem.
|
4 |
Resultados exatos e de estabilidade em colorações de hipergrafosContiero, Lucas de Oliveira January 2018 (has links)
A presente tese de doutorado trata de problemas de coloração de hipergrafos. Mais precisamente, nós trabalhamos com o chamado Problema de Erdos e Rothschild no caso de colorações arco- ris de hipergrafos. Nossas contribuições envolvem os hipergrafos plano de Fano (hipergrafo 3-uniforme com 7 v ertices e 7 hiperarestas onde todo par de v ertices e coberto) e K(k) +1 (hipergrafo obtido do grafo K+1 onde cada aresta recebe k 2 novos v ertices). Para F 2 fFano;K(k) +1g, encontramos o hipergrafo k-uniforme com o maior n umero de r-colorações de hiperarestas que não contêm cópia de F com a propriedade de que todas as suas hiperarestas têm cores distintas. Como ferramentas para tais demonstrações, obtivemos resultados mais precisos de estabilidade para K(k) +1 e outros hipergrafos ou famílias de hipergrafos, bem como um resultados de estabilidade para colorações para uma classe de hipergrafos lineares, que contém Fano e K(k)+1. Para os resultados de estabilidade para colorações utilizamos o Lema de Regularidade, introduzido por Szemeredi no contexto de grafos, e o Lema de Imersão, ambos considerados mais tarde para hipergrafos lineares por Kohayakawa, Nagle, Rodl e Schacht. / In this thesis we consider problems about colorings of hypergraphs. More precisely, we deal with the so-called Erd}os and Rothschild Problem in the case of rainbow colorings of hypergraphs. Our contributions involve the hypergraphs Fano plane (the 3-uniform hypergraph on 7 vertices and 7 hyperedges where every pair of vertices is covered) and K(k) `+1 (the hypergraph obtained from K`+1 where each edge is enlarged by k 2 new vertices). For F 2 fFano;K(k) `+1g, we obtained the k-uniform hypergraph with the largest number of r-colorings of hyperedgees not containing a copy of F with the property that all hyperedges are colored di erently. As a tool for such proofs, we obtained a sharper stability result for K(k) `+1 and other hypergraphs and families of hypergrahs. We also obtained a color stability result for a class of linear hypergraphs, which contains Fano and K(k) `+1. For these color stability result we used the Regularity Lemma, originally stated by Szemer edi for graphs, and the Embedding Lemma, both considered later for linear hypergraphs by Kohayakawa, Nagle, Rodl and Schacht
|
5 |
Problemas de coloração em teoria extremal de conjuntosContiero, Lucas de Oliveira January 2014 (has links)
Neste trabalho de mestrado tratamos de problemas de coloração em Teoria Extremal de Conjuntos. Para números inteiros positivos n, k, q e t, uma (q, t)-coloração de um hipergrafo k-uniforme H com n vértices é uma função que associa cada hiperaresta de H a uma cor em [q], onde dois elementos de mesma cor possuem intersecção de tamanho pelo menos t. Um resultado recente [1] informa qual é o hipergrafo que admite o maior número de (q, t)-colorações quando q {2, 3, 4} ou q ≥ 5 e k ≥ 2t - 1. No caso em que q ≥ 5 e k < 2t 1, este resultado determina propriedades que um hipergrafo que atinge o número máximo de colorações deve possuir, porém não identi ca os hipergrafos ótimos entre todos que satisfazem essas propriedades. A principal contribuição do nosso trabalho foi estudar uma conjectura proposta pelos autores daquele trabalho. Adaptando uma técnica clássica, demonstramos que essa conjectura é verdadeira em alguns casos. Uma outra contribuição deste trabalho foi a apresentação detalhada de demonstrações de resultados clássicos associados a este problema. / In this master's thesis we considered problems in Extremal Set Theory. For positive numbers n, k, q and t, we say that a (q, t)-coloring of an n-vertex k-uniform hypergraph H is a function such that each hyperedge from H is associated with a color in [q], where two hyperedges with the same color have at least t elements in common. A recent result [1] determined the set of hypergraphs allowing the maximum number of (q, t)-colorings when q {2, 3, 4}or when q ≥ 5 and k ≥ 2t . In the case q ≥ 5 and k < 2t - 1, that work found properties that a hypergraph with the maximum number of (q, t)-colorings satis es, but did not determine which hypergraphs are extremal. The main contribution of our work is to study a conjecture proposed by the authors of [1], which further restricts the class of possible extremal hipergraphs. Using a classical technique, we prove their conjecture for q 2 f5; 6g and restrict the class of possible extremal hipergraphs in the other cases. Another contribution of this work is the presentation of detailed proofs of the classical results related to this problem.
|
6 |
Problemas de coloração em teoria extremal de conjuntosContiero, Lucas de Oliveira January 2014 (has links)
Neste trabalho de mestrado tratamos de problemas de coloração em Teoria Extremal de Conjuntos. Para números inteiros positivos n, k, q e t, uma (q, t)-coloração de um hipergrafo k-uniforme H com n vértices é uma função que associa cada hiperaresta de H a uma cor em [q], onde dois elementos de mesma cor possuem intersecção de tamanho pelo menos t. Um resultado recente [1] informa qual é o hipergrafo que admite o maior número de (q, t)-colorações quando q {2, 3, 4} ou q ≥ 5 e k ≥ 2t - 1. No caso em que q ≥ 5 e k < 2t 1, este resultado determina propriedades que um hipergrafo que atinge o número máximo de colorações deve possuir, porém não identi ca os hipergrafos ótimos entre todos que satisfazem essas propriedades. A principal contribuição do nosso trabalho foi estudar uma conjectura proposta pelos autores daquele trabalho. Adaptando uma técnica clássica, demonstramos que essa conjectura é verdadeira em alguns casos. Uma outra contribuição deste trabalho foi a apresentação detalhada de demonstrações de resultados clássicos associados a este problema. / In this master's thesis we considered problems in Extremal Set Theory. For positive numbers n, k, q and t, we say that a (q, t)-coloring of an n-vertex k-uniform hypergraph H is a function such that each hyperedge from H is associated with a color in [q], where two hyperedges with the same color have at least t elements in common. A recent result [1] determined the set of hypergraphs allowing the maximum number of (q, t)-colorings when q {2, 3, 4}or when q ≥ 5 and k ≥ 2t . In the case q ≥ 5 and k < 2t - 1, that work found properties that a hypergraph with the maximum number of (q, t)-colorings satis es, but did not determine which hypergraphs are extremal. The main contribution of our work is to study a conjecture proposed by the authors of [1], which further restricts the class of possible extremal hipergraphs. Using a classical technique, we prove their conjecture for q 2 f5; 6g and restrict the class of possible extremal hipergraphs in the other cases. Another contribution of this work is the presentation of detailed proofs of the classical results related to this problem.
|
7 |
Resultados exatos e de estabilidade em colorações de hipergrafosContiero, Lucas de Oliveira January 2018 (has links)
A presente tese de doutorado trata de problemas de coloração de hipergrafos. Mais precisamente, nós trabalhamos com o chamado Problema de Erdos e Rothschild no caso de colorações arco- ris de hipergrafos. Nossas contribuições envolvem os hipergrafos plano de Fano (hipergrafo 3-uniforme com 7 v ertices e 7 hiperarestas onde todo par de v ertices e coberto) e K(k) +1 (hipergrafo obtido do grafo K+1 onde cada aresta recebe k 2 novos v ertices). Para F 2 fFano;K(k) +1g, encontramos o hipergrafo k-uniforme com o maior n umero de r-colorações de hiperarestas que não contêm cópia de F com a propriedade de que todas as suas hiperarestas têm cores distintas. Como ferramentas para tais demonstrações, obtivemos resultados mais precisos de estabilidade para K(k) +1 e outros hipergrafos ou famílias de hipergrafos, bem como um resultados de estabilidade para colorações para uma classe de hipergrafos lineares, que contém Fano e K(k)+1. Para os resultados de estabilidade para colorações utilizamos o Lema de Regularidade, introduzido por Szemeredi no contexto de grafos, e o Lema de Imersão, ambos considerados mais tarde para hipergrafos lineares por Kohayakawa, Nagle, Rodl e Schacht. / In this thesis we consider problems about colorings of hypergraphs. More precisely, we deal with the so-called Erd}os and Rothschild Problem in the case of rainbow colorings of hypergraphs. Our contributions involve the hypergraphs Fano plane (the 3-uniform hypergraph on 7 vertices and 7 hyperedges where every pair of vertices is covered) and K(k) `+1 (the hypergraph obtained from K`+1 where each edge is enlarged by k 2 new vertices). For F 2 fFano;K(k) `+1g, we obtained the k-uniform hypergraph with the largest number of r-colorings of hyperedgees not containing a copy of F with the property that all hyperedges are colored di erently. As a tool for such proofs, we obtained a sharper stability result for K(k) `+1 and other hypergraphs and families of hypergrahs. We also obtained a color stability result for a class of linear hypergraphs, which contains Fano and K(k) `+1. For these color stability result we used the Regularity Lemma, originally stated by Szemer edi for graphs, and the Embedding Lemma, both considered later for linear hypergraphs by Kohayakawa, Nagle, Rodl and Schacht
|
8 |
Hypergraph cycle partitionsBustamante Franco, Sebastián Felipe January 2018 (has links)
Tesis para optar al grado de Doctor en Ciencias de la Ingeniería, Mención Modelación Matemática / The main focus of this thesis is the study of monochromatic cycle partitions in uniform hypergraphs.
The first part deals with Berge-cycles. Extending a result of Rado to hypergraphs, we prove that for all $r,k \in \N$ with $k \geq 2$, the vertices of every $r(k-1)$-edge-coloured countably infinite complete $k$-uniform hypergraph can be core-partitioned into at most $r$ monochromatic Berge-cycles of different colours. We further describe a construction showing that this result is best possible.
The second part deals with $\ell$-cycles. We show that for all $\ell, k, n \in \N$ with $\ell \leq k/2$ the following hypergraph-variant of Lehel's conjecture is true. Every $2$-edge-colouring of the $k$-uniform complete graph on $n$ vertices has at most two disjoint monochromatic $\ell$-cycles in different colours that together cover all but a constant number of vertices, where the constant depends on $k$ and $\ell$. Furthermore, we can cover all vertices with at most $4$ ($3$ if $\ell \leq k/3$) disjoint monochromatic $\ell$-cycles.
The third part deals with tight-cycles in $2$-edge-colourings of complete $3$-uniform hypergraphs.
We show that for every $\eta > 0$ there exists an integer $n_0$ such that every $2$-edge-colouring of the $3$-uniform complete hypergraph on $n \geq n_0$ vertices contains two disjoint monochromatic tight cycles of distinct colours that together cover all but at most $\eta n$ vertices.
Finally, the fourth part deals with tight-cycles in a more general setting.
We prove that for every $k,r \in \N$, the vertices of every $r$-edge-coloured complete $k$-uniform hypergraph can be partitioned into a bounded number (independent of the size of the hypergraph) of monochromatic tight cycles, confirming a conjecture of Gy\'arf\'as.
We further prove that for every $r,p \in \N$, the vertices of every $r$-edge-coloured complete graph can be partitioned into a bounded number of $p$-th powers of cycles, settling a problem of Elekes, D. Soukup, L. Soukup and Szentmikl\'ossy.
In fact we prove a common generalisation of both theorems which further extends these results to all host hypergraphs with bounded independence number. / CONICYT/Doctorado Nacional/2014-21141116, CMM-Conicyt PIA AFB170001
|
9 |
Dois resultados em combinatória contemporânea / Two problems in modern combinatoricsMota, Guilherme Oliveira 30 August 2013 (has links)
Dois problemas combinatórios são estudados: (i) determinar a quantidade de cópias de um hipergrafo fixo em um hipergrafo uniforme pseudoaleatório, e (ii) estimar números de Ramsey de ordem dois e três para grafos com largura de banda pequena e grau máximo limitado. Apresentamos um lema de contagem para estimar a quantidade de cópias de um hipergrafo k-uniforme linear livre de conectores (conector é uma generalização de triângulo, para hipergrafos) que estão presentes em um hipergrafo esparso pseudoaleatório G. Considere um hipergrafo k-uniforme linear H que é livre de conectores e um hipergrafo k-uniforme G com n vértices. Seja d_H=\\max\\{\\delta(J): J\\subset H\\} e D_H=\\min\\{k d_H,\\Delta(H)\\}. Estabelecemos que, se os vértices de G não possuem grau grande, famílias pequenas de conjuntos de k-1 elementos de V(G) não possuem vizinhança comum grande, e a maioria dos pares de conjuntos em {V(G)\\choose k-1} possuem a quantidade ``correta\'\' de vizinhos, então a quantidade de imersões de H em G é (1+o(1))n^{|V(H)|}p^{|E(H)|}, desde que p\\gg n^{1/D_H} e |E(G)|={n\\choose k}p. Isso generaliza um resultado de Kohayakawa, Rödl e Sissokho [Embedding graphs with bounded degree in sparse pseudo\\-random graphs, Israel J. Math. 139 (2004), 93--137], que provaram que, para p dado como acima, esse lema de imersão vale para grafos, onde H é um grafo livre de triângulos. Determinamos assintoticamente os números de Ramsey de ordem dois e três para grafos bipartidos com largura de banda pequena e grau máximo limitado. Mais especificamente, determinamos assintoticamente o número de Ramsey de ordem dois para grafos bipartidos com largura de banda pequena e grau máximo limitado, e o número de Ramsey de ordem três para tais grafos, com a suposição adicional de que ambas as classes do grafo bipartido têm aproximadamente o mesmo tamanho. / Two combinatorial problems are studied: (i) determining the number of copies of a fixed hipergraph in uniform pseudorandom hypergraphs, and (ii) estimating the two and three color Ramsey numbers for graphs with small bandwidth and bounded maximum degree. We give a counting lemma for the number of copies of linear k-uniform \\emph hypergraphs (connector is a generalization of triangle for hypergraphs) that are contained in some sparse hypergraphs G. Let H be a linear k-uniform connector-free hypergraph and let G be a k-uniform hypergraph with n vertices. Set d_H=\\max\\{\\delta(J)\\colon J\\subset H\\} and D_H=\\min\\{kd_H,\\Delta(H)\\}. We proved that if the vertices of G do not have large degree, small families of (k-1)-element sets of V(G) do not have large common neighbourhood and most of the pairs of sets in {V(G)\\choose k-1} have the `right\' number of common neighbours, then the number of embeddings of H in G is (1+o(1))n^p^, given that p\\gg n^ and |E(G)|=p. This generalizes a result by Kohayakawa, R\\\"odl and Sissokho [Embedding graphs with bounded degree in sparse pseudo\\-random graphs, Israel J. Math. 139 (2004), 93--137], who proved that, for p as above, this result holds for graphs, where H is a triangle-free graph. We determine asymptotically the two and three Ramsey numbers for bipartite graphs with small bandwidth and bounded maximum degree. More generally, we determine asymptotically the two color Ramsey number for bipartite graphs with small bandwidth and bounded maximum degree and the three color Ramsey number for such graphs with the additional assumption that both classes of the bipartite graph have almost the same size.
|
10 |
Dois resultados em combinatória contemporânea / Two problems in modern combinatoricsGuilherme Oliveira Mota 30 August 2013 (has links)
Dois problemas combinatórios são estudados: (i) determinar a quantidade de cópias de um hipergrafo fixo em um hipergrafo uniforme pseudoaleatório, e (ii) estimar números de Ramsey de ordem dois e três para grafos com largura de banda pequena e grau máximo limitado. Apresentamos um lema de contagem para estimar a quantidade de cópias de um hipergrafo k-uniforme linear livre de conectores (conector é uma generalização de triângulo, para hipergrafos) que estão presentes em um hipergrafo esparso pseudoaleatório G. Considere um hipergrafo k-uniforme linear H que é livre de conectores e um hipergrafo k-uniforme G com n vértices. Seja d_H=\\max\\{\\delta(J): J\\subset H\\} e D_H=\\min\\{k d_H,\\Delta(H)\\}. Estabelecemos que, se os vértices de G não possuem grau grande, famílias pequenas de conjuntos de k-1 elementos de V(G) não possuem vizinhança comum grande, e a maioria dos pares de conjuntos em {V(G)\\choose k-1} possuem a quantidade ``correta\'\' de vizinhos, então a quantidade de imersões de H em G é (1+o(1))n^{|V(H)|}p^{|E(H)|}, desde que p\\gg n^{1/D_H} e |E(G)|={n\\choose k}p. Isso generaliza um resultado de Kohayakawa, Rödl e Sissokho [Embedding graphs with bounded degree in sparse pseudo\\-random graphs, Israel J. Math. 139 (2004), 93--137], que provaram que, para p dado como acima, esse lema de imersão vale para grafos, onde H é um grafo livre de triângulos. Determinamos assintoticamente os números de Ramsey de ordem dois e três para grafos bipartidos com largura de banda pequena e grau máximo limitado. Mais especificamente, determinamos assintoticamente o número de Ramsey de ordem dois para grafos bipartidos com largura de banda pequena e grau máximo limitado, e o número de Ramsey de ordem três para tais grafos, com a suposição adicional de que ambas as classes do grafo bipartido têm aproximadamente o mesmo tamanho. / Two combinatorial problems are studied: (i) determining the number of copies of a fixed hipergraph in uniform pseudorandom hypergraphs, and (ii) estimating the two and three color Ramsey numbers for graphs with small bandwidth and bounded maximum degree. We give a counting lemma for the number of copies of linear k-uniform \\emph hypergraphs (connector is a generalization of triangle for hypergraphs) that are contained in some sparse hypergraphs G. Let H be a linear k-uniform connector-free hypergraph and let G be a k-uniform hypergraph with n vertices. Set d_H=\\max\\{\\delta(J)\\colon J\\subset H\\} and D_H=\\min\\{kd_H,\\Delta(H)\\}. We proved that if the vertices of G do not have large degree, small families of (k-1)-element sets of V(G) do not have large common neighbourhood and most of the pairs of sets in {V(G)\\choose k-1} have the `right\' number of common neighbours, then the number of embeddings of H in G is (1+o(1))n^p^, given that p\\gg n^ and |E(G)|=p. This generalizes a result by Kohayakawa, R\\\"odl and Sissokho [Embedding graphs with bounded degree in sparse pseudo\\-random graphs, Israel J. Math. 139 (2004), 93--137], who proved that, for p as above, this result holds for graphs, where H is a triangle-free graph. We determine asymptotically the two and three Ramsey numbers for bipartite graphs with small bandwidth and bounded maximum degree. More generally, we determine asymptotically the two color Ramsey number for bipartite graphs with small bandwidth and bounded maximum degree and the three color Ramsey number for such graphs with the additional assumption that both classes of the bipartite graph have almost the same size.
|
Page generated in 0.0514 seconds