• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 8
  • 8
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Enzymatic Mechanisms and Chemical Probes of the Myst Family of Histone Acetyltransferases

Yang, Chao 01 August 2013 (has links)
As an important posttranslational modification, protein acetylation plays critical roles in many biological processes such as gene transcription, DNA damage repair, apoptosis and metabolism. The acetylation occurs on the ε-amino group of specific lysine residues, and is catalyzed by histone acetyltransferases (HATs). In cellular contexts, HATs are found to target hundreds and thousands of substrates including histone and nonhistone proteins. Lysine acetylation changes the microenvironment of protein and may potentially alter protein activity and protein-protein interaction. The goal of this dissertation project is to investigate the impact of lysine acetylation on the catalysis of MYST HATs, and to establish the strategy for labeling substrates of the MYST HATs at cellular level. To understand the regulatory mechanism of MYST HATs, a detailed study was carried out to investigate the active site lysine acetylation of two MYST HATs (MOF and Tip60). Autoradiography and immunoblotting data shows that mutation of active site lysine differentially affects the enzyme autoacetylation activity and the cognate substrate acetylation activity. In addition, deacetylated MOF and Tip60 were prepared by using the nonspecific lysine deacetylase Sirt1. Kinetic study demonstrated that the acetylation of the active site lysine on MYST HATs marginally modulates the HAT catalysis. This work provides new insights into the regulatory mechanism of MYST catalysis. In the second part of my work, we designed and synthesized a series of Ac-CoA analogs conjugated with alkynyl or azido functional groups. Meanwhile, the active site of the MOF was engineered to expand the cofactor binding capability. Fluorescence screening was carried out to characterize the enzyme activity to Ac-CoA analogs. MOF-I317A with all analogs and MOF-I317A/H273A–5HYCoA were identified and further applied in the labeling of the cognate histone H4 protein and HAT substrates in 293T cell lysate. Visualizing of the labeled substrate was achieved using the alkynyl or azido-tagged fluorescent reporters through the copper-catalyzed azide−alkyne cycloaddition. As expected, the histone H4 protein was successfully labeled by the active enzyme-cofactor pairs. More intriguingly, multiple protein bands in cell lysate were labeled and observed. This work provides a new versatile strategy in exploring the substrates of MYST HATs at the proteomic level.
2

Analysis of histone and histone chaperone nuclear import

Blackwell, Jeffrey Steven. January 2008 (has links)
Thesis (Ph. D.)--University of Virginia, 2008. / Title from title page. Includes bibliographical references. Also available online through Digital Dissertations.
3

Development of Inhibitors and Assay Methods for Histone Acetyltransferases

Wu, Jiang 07 May 2011 (has links)
Histone acetyltransferases (HATs) are important enzymes in transcriptional control and potential targets for chemotherapeutic intervention in malignant diseases. Among different HAT members, the yeast Esa1 and human Tip60 (the HIV-1 Tat interactive protein, 60KDa) play multiple roles in normal cellular processes including transcription, cell cycle and checkpoint machinery, double strand DNA break repair, apoptosis, and cell cycle progression. Tip60 is also implicated in several human diseases such as prostate cancer, and gastric cancer. These studies suggest that Tip60 is a potential therapeutic target for new cancer treatment. So, we designed experimental work to synthesize and investigate organic inhibitors of Tip60 using different strategies, including substrate analogs, small molecule screening, and modification of the natural product anacardic acid. These studies provide important chemical agents for basic biology research of HAT function, and produce potential lead compounds for future pharmacologic intervention of HAT deregulation in cancer. Currently, of the methods used for the measurement of acetyltransferase activities, many comprise tedious separation procedures and involve enzyme-coupled steps or radioactive materials. These shortcomings have limited their applications in high-throughput screening (HTS) of HAT inhibitors. To circumvent these problems, a homogenous fluorescent HAT assay based on engineered H4 peptide was designed, synthesized, and evaluated. The data showed that these fluorescent reporters can be used to detect the acetyltransferase activities.
4

Molecular regulation of Pax5-mediated biological functions

He, Ti. January 2008 (has links) (PDF)
Thesis (Ph. D.)--University of Alabama at Birmingham, 2008. / Title from first page of PDF file (viewed Feb. 12, 2009). Includes bibliographical references.
5

Alcohol induced histone acetylation mediated by histone acetyl transferase GCN5 in liver

Choudhury, Mahua, Shukla, Shivendra D. January 2008 (has links)
The entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from PDF of title page (University of Missouri--Columbia, viewed on April 6, 2010). Vita. Thesis advisor: Shivendra D. Shukla. "August 2008" Includes bibliographical references
6

A genome-wide characterization of Mof or Tip60 containing complexes in mouse embryonic stem cells / L'analyse génomique des complexes contenant les acétyltransférases Mof ou Tip60 révèle des fonctions à la fois redondantes mais aussi spécifiques dans les cellules souches embryonnaire de souris

Ravens, Sarina 01 December 2014 (has links)
L’acétylation des histones est associée à une activation transcriptionnelle. Cette acétylation est mise en place par des histone acétyltransférases (HATs) qui sont le plus souvent les sous-unités catalytiques de complexes multiprotéiques. Mon travail concerne plus particulièrement deux complexes contenant l’acétyltransférase Mof, MSL et NSL, ainsi que le complexe HAT Tip60-p400 dans les cellules souches embryonnaires de souris (mESCs). Nos analyses de localistaion sur l’ensemble du génome par ChIP-seq indiquent que MSL, NSL et Tip60-p400 se lient aux gènes activement transcrits et agissent comme des co-activateurs transcriptionnels majeurs dans les mESCs. MSL, NSL et Tip60-p400 ont des rôles à la fois chevauchants mais aussi distincts dans la régulation transcriptionnelle dans les mESCs. Chaque complexe présent un profil distinct de liaison à la chromatine. NSL lie principalement des gènes de ménage. MSL et Tip60-p400 sont également présent les gènes impliqués dans le développement. MSL est directement impliqué dans l’augmentation de l’expression de ces gènes au cours de la différenciation des mESCs. / Histone acetylation is involved in transcriptional activation of genes and is carried out by histone acetyltransferases (HATs), which are part of molecular protein complexes. This study focuses on the genome-wide role of Mof-containing MSL and NSL complexes and the Tip60-p400 complex in mouse embryonic stem cells (mESCs). I have analysed these complexes by ChIP-seq, shRNA knockdown and biochemical approaches. The genome-wide binding studies show that NSL, MSL and Tip60-p400 have a global overlap at promoters, but also bind to specific gene sets. There distinct binding profiles propose distinct roles in transcriptional regulation. MSL is the main H4K16 acetylase in mESCs.NSL binds mainly to housekeeping genes, whereas MSL and Tip60 are also present at developmental genes. Importantly, these developmental genes are directly regulated by MSL during cellular differentiation.
7

Function and Regulation of the Tip60-p400 Complex in Embryonic Stem Cells: A Dissertation

Chen, Poshen B. 13 August 2015 (has links)
The following work examines the mechanisms by which Tip60-p400 chromatin remodeling complex regulates gene expression in embryonic stem cells (ESCs). Tip60-p400 complex has distinct functions in undifferentiated and differentiated cells. While Tip60-p400 is often associated with gene activation in differentiated cells, its most prominent function in ESCs is to repress differentiation-related genes. I show that Tip60-p400 interacts with Hdac6 and other proteins to form a unique form of the complex in ESCs. Tip60-Hdac6 interaction is stem cell specific and is necessary for Tip60-p400 mediated gene regulation, indicating that Tip60- p400 function is controlled in part through the regulation of Hdac6 during development. Furthermore, I find that Hdac6 is required for the binding of Tip60- p400 to many of its target genes, indicating Hdac6 is necessary for the unique function of Tip60-p400 in ESCs. In addition to accessory proteins like Hdac6, Tip60-p400 also interacts with thousands of coding and noncoding RNAs in ESCs. I show that R-loops, DNA-RNA hybrids formed during transcription of many genes, are important for regulation of chromatin binding by at least two chromatin regulators (Tip60-p400 and PRC2). This finding suggests that transcripts produced by many genes in ESC may serve as a signal to modulate binding of chromatin regulators. However, R-loops might also function to regulate chromatin architecture in differentiated cells as well. Future studies based on this work will be necessary to understand the full repertoire of cell types and chromatin regulators regulated by these structures.
8

Targeting the Histone Acetyl-Transferase, RTT109, for Novel Anti-Fungal Drug Development: A Dissertation

Lopes da Rosa-Spiegler, Jessica 03 May 2012 (has links)
Discovery of new antifungal chemo-therapeutics for humans is limited by the large degree of conservation among eukaryotic organisms. In recent years, the histone acetyl-transferase Rtt109 was identified as the sole enzyme responsible for an abundant and important histone modification, histone H3 lysine 56 (H3K56) acetylation. In the absence of Rtt109, the lack of acetylated H3K56 renders yeast cells extremely sensitive to genotoxic agents. Consequently, the ability to sustain genotoxic stress from the host immune system is crucial for pathogens to perpetuate an infection. Because Rtt109 is conserved only within the fungal kingdom, I reasoned that Rtt109 could be a novel drug target. My dissertation first establishes that genome stability provided by Rtt109 and H3K56 acetylation is required for Candida albicans pathogenesis. I demonstrate that mice infected with rtt109 -/- cells experience a significant reduction in organ pathology and mortality rate. I hypothesized that the avirulent phenotype of rtt109 -/- cells is due to their intrinsic hypersensitivity to the genotoxic effects of reactive oxygen species (ROS), which are utilized by phagocytic cells of the immune system to kill pathogens. Indeed, C. albicans rtt109 -/- cells are more efficiently killed by macrophages in vitro than are wild-type cells. However, inhibition of ROS generation in macrophages renders rtt109 -/- and wild-type yeast cells equally resilient to killing. These findings support the concept that ability to resist genotoxic stress conferred by Rtt109 and H3K56 acetylation is a virulence factor for fungal pathogens and establish Rtt109 as an opportune drug- target for novel antifungal therapeutics. Second, I report the discovery of a specific chemical inhibitor of Rtt109 catalysis as the initial step in the development of a novel antifungal agent. We established a collaboration with the Broad Institute (Cambridge, MA) to perform a high-throughput screen of 300,000 compounds. From these, I identified a single chemical, termed KB7, which specifically inhibits Rtt109 catalysis, with no effect on other HAT enzymes tested. KB7 has an IC50 value of approximately 60 nM and displays noncompetitive inhibition regarding both acetyl-coenzyme A and histone substrates. With the genotoxic agent camptothecin, KB7 causes a synergistic decrease in C. albicans growth rate. However, this effect is only observed in an efflux-pump mutant, suggesting that this compound would be more effective if it were better retained intracellularly. Further studies through structure-activity relationship (SAR) modifications will be conducted on KB7 to improve its effective cellular concentration.

Page generated in 0.106 seconds